scholarly journals Tidal evolution of eccentric binaries driven by convective turbulent viscosity

2020 ◽  
Vol 496 (3) ◽  
pp. 3767-3780
Author(s):  
Michelle Vick ◽  
Dong Lai

ABSTRACT Tidal dissipation due to convective turbulent viscosity shapes the evolution of a variety of astrophysical binaries. For example, this type of dissipation determines the rate of orbital circularization in a binary with a post-main-sequence star that is evolving toward a common envelope phase. Viscous dissipation can also influence binaries with solar-type stars, or stars with a close-in giant planet. In general, the effective viscosity in a convective stellar envelope depends on the tidal forcing frequency ωtide; when ωtide is larger than the turnover frequency of convective eddies, the viscosity is reduced. Previous works have focused on binaries in nearly circular orbits. However, for eccentric orbits, the tidal potential has many forcing frequencies. In this paper, we develop a formalism for computing tidal dissipation that captures the effect of frequency-dependent turbulent viscosity and is valid for arbitrary binary eccentricities. We also present an alternative simpler formulation that is suitable for very high eccentricities. We apply our formalisms to a giant branch (GB) star model and a solar-type star model. We find that a range of pseudo-synchronous rotation rates are possible for both stellar models, and the pseudo-synchronous rate can differ from the prediction of the commonly used weak tidal friction theory by up to a factor of a few. We also find that tidal decay and circularization due to turbulent viscosity can be a few orders of magnitude faster than predicted by weak tidal friction in GB stars on eccentric, small pericentre orbits, but is suppressed by a few orders of magnitude in solar-type stars due to viscosity reduction.

2018 ◽  
Vol 612 ◽  
pp. A108 ◽  
Author(s):  
A.-M. Lagrange ◽  
M. Keppler ◽  
N. Meunier ◽  
J. Lannier ◽  
H. Beust ◽  
...  

Context. The search for extrasolar planets has been limited so far to close orbit (typ. ≤5 au) planets around mature solar-type stars on the one hand, and to planets on wide orbits (≥10 au) around young stars on the other hand. To get a better view of the full giant planet population, we have started a survey to search for giant planets around a sample of carefully selected young stars. Aims. This paper aims at exploring the giant planet population around one of our targets, β Pictoris, over a wide range of separations. With a disk and a planet already known, the β Pictoris system is indeed a very precious system for studies of planetary formation and evolution, as well as of planet–disk interactions. Methods. We analyse more than 2000 HARPS high-resolution spectra taken over 13 years as well as NaCo images recorded between 2003 and 2016. We combine these data to compute the detection probabilities of planets throughout the disk, from a fraction of au to a few dozen au. Results. We exclude the presence of planets more massive than 3 MJup closer than 1 au and further than 10 au, with a 90% probability. 15+ MJup companions are excluded throughout the disk except between 3 and 5 au with a 90% probability. In this region, we exclude companions with masses larger than 18 (resp. 30) MJup with probabilities of 60 (resp. 90) %.


2019 ◽  
Vol 490 (1) ◽  
pp. 502-512 ◽  
Author(s):  
A L Wallace ◽  
M J Ireland

ABSTRACT Giant planets are expected to form at orbital radii that are relatively large compared to transit and radial velocity detections (>1 au). As a result, giant planet formation is best observed through direct imaging. By simulating the formation of giant (0.3–5MJ) planets by core accretion, we predict planet magnitude in the near-infrared (2–4 μm) and demonstrate that, once a planet reaches the runaway accretion phase, it is self-luminous and is bright enough to be detected in near-infrared wavelengths. Using planet distribution models consistent with existing radial velocity and imaging constraints, we simulate a large sample of systems with the same stellar and disc properties to determine how many planets can be detected. We find that current large (8–10 m) telescopes have at most a 0.2 per cent chance of detecting a core-accretion giant planet in the L’ band and 2 per cent in the K band for a typical solar-type star. Future instruments such as METIS and VIKiNG have higher sensitivity and are expected to detect exoplanets at a maximum rate of 2 and 8 per cent, respectively.


1991 ◽  
Vol 130 ◽  
pp. 336-341
Author(s):  
David F. Gray

AbstractEvolved stars tell us a great deal about dynamos. The granulation boundary shows us where solar-type convection begins. Since activity indicators also start at this boundary, it is a good bet that solar-type convection is an integral part of dynamo activity for all stars. The rotation boundary tells us where the magnetic fields of dynamos become effective in dissipating angular momentum, and rotation beyond the boundary tells us the limiting value needed for a dynamo to function. The observed uniqueness of rotation rates after the rotation boundary is crossed can be understood through the rotostat hypothesis. Quite apart from the reason for the unique rotation rate, its existence can be used to show that magnetic activity of giants is concentrated to the equatorial latitudes, as it is in the solar case. The coronal boundary in the H-R diagram is probably nothing more than a map of where rotation becomes too low to sustain dynamo activity.


2019 ◽  
Vol 632 ◽  
pp. A6 ◽  
Author(s):  
F. Gallet ◽  
C. Zanni ◽  
L. Amard

Context. The early pre-main sequence phase during which solar-mass stars are still likely surrounded by an accretion disk represents a puzzling stage of their rotational evolution. While solar-mass stars are accreting and contracting, they do not seem to spin up substantially. Aims. It is usually assumed that the magnetospheric star-disk interaction tends to maintain the stellar rotation period constant (“disk-locking”), but this hypothesis has never been thoroughly verified. Our aim is to investigate the impact of the star-disk interaction mechanism on the stellar spin evolution during the accreting pre-main sequence phases. Methods. We devised a model for the torques acting on the stellar envelope based on studies of stellar winds, and we developed a new prescription for the star-disk coupling founded on numerical simulations of star-disk interaction and magnetospheric ejections. We then used this torque model to follow the long-term evolution of the stellar rotation. Results. Strong dipolar magnetic field components up to a few kG are required to extract enough angular momentum so as to keep the surface rotation rate of solar-type stars approximately constant for a few Myr. Furthermore an efficient enough spin-down torque can be provided by either one of the following: a stellar wind with a mass outflow rate corresponding to ≈10% of the accretion rate, or a lighter stellar wind combined with a disk that is truncated around the corotation radius entering a propeller regime. Conclusions. Magnetospheric ejections and accretion powered stellar winds play an important role in the spin evolution of solar-type stars. However, kG dipolar magnetic fields are neither uncommon or ubiquitous. Besides, it is unclear how massive stellar winds can be powered while numerical models of the propeller regime display a strong variability that has no observational confirmation. Better observational statistics and more realistic models could contribute to help lessen our calculations’ requirements.


2010 ◽  
Vol 6 (S271) ◽  
pp. 363-364
Author(s):  
Adrian J. Barker ◽  
Gordon I. Ogilvie

AbstractInternal gravity waves are excited at the interface of convection and radiation zones of a solar-type star, by the tidal forcing of a short-period planet. The fate of these waves as they approach the centre of the star depends on their amplitude. We discuss the results of numerical simulations of these waves approaching the centre of a star, and the resulting evolution of the spin of the central regions of the star and the orbit of the planet. If the waves break, we find efficient tidal dissipation, which is not present if the waves perfectly reflect from the centre. This highlights an important amplitude dependence of the (stellar) tidal quality factor Q′, which has implications for the survival of planets on short-period orbits around solar-type stars, with radiative cores.


2013 ◽  
Vol 8 (S299) ◽  
pp. 356-357
Author(s):  
Adam M. Ritchey ◽  
Guillermo Gonzalez ◽  
Myra Stone ◽  
George Wallerstein

AbstractWe present preliminary results of a detailed chemical abundance analysis for a sample of solar-type stars known to exhibit excess infrared emission associated with dusty debris disks. Our sample of 28 stars was selected based on results from the Formation and Evolution of Planetary Systems (FEPS) Spitzer Legacy Program, for the purpose of investigating whether the stellar atmospheres have been polluted with planetary material, which could indicate that the metallicity enhancement in stars with planets is due to metal-rich infall in the later stages of star and planet formation. The preliminary results presented here consist of precise abundances for 15 elements (C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Fe, Co, and Ni) for half of the stars in our sample. We find that none of the stars investigated so far exhibit the expected trend of increasing elemental abundance with increasing condensation temperature, which would result from the stars having accreted planetary debris. Rather, the slopes of linear least-squares fits to the abundance data are either negative or consistent with zero. In both cases, our results may indicate that, like the Sun, the debris disk host stars are deficient in refractory elements, a possible signature of terrestrial and/or gas giant planet formation.


2013 ◽  
Vol 8 (S299) ◽  
pp. 386-390
Author(s):  
Rebekah I. Dawson ◽  
Ruth A. Murray-Clay ◽  
John Asher Johnson

AbstractIt was once widely believed that planets formed peacefully in situ in their proto-planetary disks and subsequently remain in place. Instead, growing evidence suggests that many giant planets undergo dynamical rearrangement that results in planets migrating inward in the disk, far from their birthplaces. However, it remains debated whether this migration is caused by smooth planet-disk interactions or violent multi-body interactions. Both classes of model can produce Jupiter-mass planets orbiting within 0.1 AU of their host stars, also known as hot Jupiters. In the latter class of model, another planet or star in the system perturbs the Jupiter onto a highly eccentric orbit, which tidal dissipation subsequently shrinks and circularizes during close passages to the star. We assess the prevalence of smooth vs. violent migration through two studies. First, motivated by the predictions of Socrates et al. (2012), we search for super-eccentric hot Jupiter progenitors by using the “photoeccentric effect” to measure the eccentricities of Kepler giant planet candidates from their transit light curves. We find a significant lack of super- eccentric proto-hot Jupiters compared to the number expected, allowing us to place an upper limit on the fraction of hot Jupiters created by stellar binaries. Second, if both planet-disk and multi-body interactions commonly cause giant planet migration, physical properties of the proto-planetary environment may determine which is triggered. We identify three trends in which giant planets orbiting metal rich stars show signatures of planet-planet interactions: (1) gas giants orbiting within 1 AU of metal-rich stars have a range of eccentricities, whereas those orbiting metal- poor stars are restricted to lower eccentricities; (2) metal-rich stars host most eccentric proto-hot Jupiters undergoing tidal circularization; and (3) the pile-up of short-period giant planets, missing in the Kepler sample, is a feature of metal-rich stars and is largely recovered for giants orbiting metal-rich Kepler host stars. These two studies suggest that both disk migration and planet-planet interactions may be widespread, with the latter occurring primarily in metal-rich planetary systems where multiple giant planets can form. Funded by NSF-GRFP DGE-1144152.


2021 ◽  
Vol 922 (1) ◽  
pp. 4
Author(s):  
Alexander P. Stephan ◽  
Smadar Naoz ◽  
B. Scott Gaudi

Abstract The recent discoveries of WD J091405.30+191412.25 (WD J0914 hereafter), a white dwarf (WD) likely accreting material from an ice-giant planet, and WD 1856+534 b (WD 1856 b hereafter), a Jupiter-sized planet transiting a WD, are the first direct evidence of giant planets orbiting WDs. However, for both systems, the observations indicate that the planets’ current orbital distances would have put them inside the stellar envelope during the red-giant phase, implying that the planets must have migrated to their current orbits after their host stars became WDs. Furthermore, WD J0914 is a very hot WD with a short cooling time that indicates a fast migration mechanism. Here, we demonstrate that the Eccentric Kozai–Lidov Mechanism, combined with stellar evolution and tidal effects, can naturally produce the observed orbital configurations, assuming that the WDs have distant stellar companions. Indeed, WD 1856 is part of a stellar triple system, being a distant companion to a stellar binary. We provide constraints for the orbital and physical characteristics for the potential stellar companion of WD J0914 and determine the initial orbital parameters of the WD 1856 system.


2020 ◽  
Vol 492 (4) ◽  
pp. 6059-6066 ◽  
Author(s):  
Dimitri Veras ◽  
Jim Fuller

ABSTRACT Robust evidence of an ice giant planet shedding its atmosphere around the white dwarf WD J0914+1914 represents a milestone in exoplanetary science, allowing us to finally supplement our knowledge of white dwarf metal pollution, debris discs, and minor planets with the presence of a major planet. Here, we discuss the possible dynamical origins of this planet, WD J0914+1914 b. The very young cooling age of the host white dwarf (13 Myr) combined with the currently estimated planet–star separation of about 0.07 au imposes particularly intriguing and restrictive coupled constraints on its current orbit and its tidal dissipation characteristics. The planet must have been scattered from a distance of at least a few au to its current location, requiring the current or former presence of at least one more major planet in the system in the absence of a hidden binary companion. We show that WD J0914+1914 b could not have subsequently shrunk its orbit through chaotic f-mode tidal excitation (characteristic of such highly eccentric orbits) unless the planet was or is highly inflated and possibly had partially thermally self-disrupted from mode-based energy release. We also demonstrate that if the planet is currently assumed to reside on a near-circular orbit at 0.07 au, then non-chaotic equilibrium tides impose unrealistic values for the planet’s tidal quality factor. We conclude that WD J0914+1914 b either (i) actually resides interior to 0.07 au, (ii) resembles a disrupted ‘Super-Puff’ whose remains reside on a circular orbit, or (iii) resembles a larger or denser ice giant on a currently eccentric orbit. Distinguishing these three possibilities strongly motivates follow-up observations.


Sign in / Sign up

Export Citation Format

Share Document