scholarly journals Simultaneous multi-telescope observations of FRB 121102

2020 ◽  
Vol 496 (4) ◽  
pp. 4565-4573 ◽  
Author(s):  
M Caleb ◽  
B W Stappers ◽  
T D Abbott ◽  
E D Barr ◽  
M C Bezuidenhout ◽  
...  

ABSTRACT We present 11 detections of FRB 121102 in ∼3 h of observations during its ‘active’ period on the 10th of 2019 September. The detections were made using the newly deployed MeerTRAP system and single pulse detection pipeline at the MeerKAT radio telescope in South Africa. Fortuitously, the Nançay radio telescope observations on this day overlapped with the last hour of MeerKAT observations and resulted in four simultaneous detections. The observations with MeerKAT’s wide band receiver, which extends down to relatively low frequencies (900–1670 MHz usable L-band range), have allowed us to get a detailed look at the complex frequency structure, intensity variations, and frequency-dependent sub-pulse drifting. The drift rates we measure for the full-band and sub-banded data are consistent with those published between 600 and 6500 MHz with a slope of −0.147 ± 0.014 ms−1. Two of the detected bursts exhibit fainter ‘precursors’ separated from the brighter main pulse by ∼28 and ∼34 ms. A follow-up multi-telescope campaign on the 6th and 8th of 2019 October to better understand these frequency drifts and structures over a wide and continuous band was undertaken. No detections resulted, indicating that the source was ‘inactive’ over a broad frequency range during this time.

2017 ◽  
Vol 13 (S337) ◽  
pp. 370-371
Author(s):  
Mateusz Malenta ◽  
Ewan Barr ◽  
Aaron Chippendale ◽  
Xinping Deng ◽  
Daniel George ◽  
...  

AbstractThe challenges of detecting and localising Fast Radio Bursts in real time can be met with the use of Phased Array Feeds. One such system, capable of creating up to 36 simultaneous beams, is currently being commissioned at the Effelsberg radio telescope in Germany following testing at the 64 m Parkes radio telescope. The PAFINDER (Phased Array Feed FRB Finder) pipeline will be used with this receiver to enable real–time single–pulse detection and localisation.


Author(s):  
M Cruces ◽  
D J Champion ◽  
D Li ◽  
M Kramer ◽  
W W Zhu ◽  
...  

Abstract We report the follow-up of 10 pulsars discovered by the Five-hundred-meter Aperture Spherical radio-Telescope (FAST) during its commissioning. The pulsars were discovered at a frequency of 500-MHz using the ultra-wide-band (UWB) receiver in drift-scan mode, as part of the Commensal Radio Astronomy FAST Survey (CRAFTS). We carried out the timing campaign with the 100-m Effelsberg radio-telescope at L-band around 1.36 GHz. Along with 11 FAST pulsars previously reported, FAST seems to be uncovering a population of older pulsars, bordering and/or even across the pulsar death-lines. We report here two sources with notable characteristics. PSR J1951+4724 is a young and energetic pulsar with nearly 100 per cent of linearly polarized flux density and visible up to an observing frequency of 8 GHz. PSR J2338+4818, a mildly recycled pulsar in a 95.2-d orbit with a Carbon-Oxygen white dwarf (WD) companion of $\gtrsim 1\, \rm {M}_{\odot }$, based on estimates from the mass function. This system is the widest WD binary with the most massive companion known to-date. Conspicuous discrepancy was found between estimations based on NE2001 and YMW16 electron density models, which can be attributed to under-representation of pulsars in the sky region between Galactic longitudes 70○ < l < 100○. This work represents one of the early CRAFTS results, which start to show potential to substantially enrich the pulsar sample and refine the Galactic electron density model.


2020 ◽  
Vol 496 (4) ◽  
pp. 4836-4848 ◽  
Author(s):  
R Spiewak ◽  
C Flynn ◽  
S Johnston ◽  
E F Keane ◽  
M Bailes ◽  
...  

ABSTRACT The SUrvey for Pulsars and Extragalactic Radio Bursts ran from 2014 April to 2019 August, covering a large fraction of the Southern hemisphere at mid- to high-galactic latitudes and consisting of 9-min pointings taken with the 20-cm multibeam receiver on the Parkes Radio Telescope. Data up to 2017 September 21 have been searched using standard Fourier techniques, single-pulse searches, and Fast Folding Algorithm searches. We present 19 new discoveries, bringing the total to 27 discoveries in the programme, and we report the results of follow-up timing observations at Parkes for 26 of these pulsars, including the millisecond pulsar PSR J1421−4409; the faint, highly modulated, slow pulsar PSR J1646−1910; and the nulling pulsar PSR J1337−4441. We present new timing solutions for 23 pulsars, and we report flux densities, modulation indices, and polarization properties.


2017 ◽  
Vol 13 (S337) ◽  
pp. 348-349
Author(s):  
Bhal Chandra Joshi ◽  
Arun Naidu ◽  
Vishal Gajjar ◽  
Geoffrey A. E. Wright

AbstractWe present simultaneous multi-frequency observations of PSR J1822–2256 for the first time, utilizing the unique capabilities of upgraded Giant Meterwave Radio Telescope (uGMRT). No emission is detected in about 10 % of pulses. At least two drift modes and a possibly third rare mode, occur for 66, 21 and 2 % pulses respectively (P3 ~ 17, 7.5 and 5 P0 respectively). The three drift modes and the nulls occur concurrently from 250 to 1500 MHz. Modal average profiles are distinct with their widths increasing with drift rate. These sub-pulse drift related profile mode-changes can provide independent probes of beam geometry and polar gap physics.


2021 ◽  
Vol 21 (10) ◽  
pp. 251
Author(s):  
Shen Wang ◽  
Wei-Wei Zhu ◽  
Di Li ◽  
Zhi-Chen Pan ◽  
Pei Wang ◽  
...  

Abstract We present Arecibo 327 MHz confirmation and follow-up studies of seven new pulsars discovered by the Five-hundred-meter Aperture Spherical radio Telescope (FAST). These pulsars are discovered in a pilot program of the Commensal Radio Astronomy FAST Survey (CRAFTS) with the ultra-wide-bandwidth commissioning receiver. Five of them are normal pulsars and two are extreme nulling slow pulsars. PSR J2111+2132’s dispersion measure(DM: 78.5 pc cm−3) is above the upper limits of the two Galactic free electron density models, NE2001 and YMW16, and PSR J2057+2133’s position is out of the Scutum-Crux Arm, making them uniquely useful for improving the Galactic free electron density model in their directions. We present a detailed single pulse analysis for the slow nulling pulsars. We show evidence that PSR J2323+1214’s main pulse component follows a non-Poisson distribution and marginal evidence for a sub-pulse-drift or recurrent period of 32.3±0.4 rotations from PSR J0539+0013. We discuss the implication of our finding to the pulsar radiation mechanism.


2016 ◽  
Vol 12 (2) ◽  
pp. 4204-4212 ◽  
Author(s):  
Maheshwar Sharon ◽  
Ritesh Vishwakarma ◽  
Abhijeet Rajendra Phatak ◽  
Golap Kalita ◽  
Nallin Sharma ◽  
...  

Corn cob, an agricultural waste, is paralyzed at different temperatures (700oC, 800oC and 900oC). Microwave absorption of carbon in the frequency range of 2 GHz to 8 GHz is reported. Carbon activated  with 5%  nickel nitrate showed more than 90% absorption of microwave in the frequency range from 6 GHz to 8 GHz, while carbon activated  with 10% Nickel nitrate treated corn cob showed 90% absorption  in the frequency range of 2.5 GHz to 5 GHz. Carbon showing the best absorption are characterized by XRD, Raman spectra and SEM . It is suggested that corn cob treatment   alone with KOH did not improve the microwave absorption, whereas treatment along with nickel nitrate improved the absorption property much better. It is proposed that treatment with nickel nitrate helps in creating suitable pores in carbon   which improved the absorption behavior because while treating carbon with 1N HCl helps to leach out nickel creating equivalent amount of pores in the carbon.


Geophysics ◽  
1992 ◽  
Vol 57 (6) ◽  
pp. 854-859 ◽  
Author(s):  
Xiao Ming Tang

A new technique for measuring elastic wave attenuation in the frequency range of 10–150 kHz consists of measuring low‐frequency waveforms using two cylindrical bars of the same material but of different lengths. The attenuation is obtained through two steps. In the first, the waveform measured within the shorter bar is propagated to the length of the longer bar, and the distortion of the waveform due to the dispersion effect of the cylindrical waveguide is compensated. The second step is the inversion for the attenuation or Q of the bar material by minimizing the difference between the waveform propagated from the shorter bar and the waveform measured within the longer bar. The waveform inversion is performed in the time domain, and the waveforms can be appropriately truncated to avoid multiple reflections due to the finite size of the (shorter) sample, allowing attenuation to be measured at long wavelengths or low frequencies. The frequency range in which this technique operates fills the gap between the resonant bar measurement (∼10 kHz) and ultrasonic measurement (∼100–1000 kHz). By using the technique, attenuation values in a PVC (a highly attenuative) material and in Sierra White granite were measured in the frequency range of 40–140 kHz. The obtained attenuation values for the two materials are found to be reliable and consistent.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 529 ◽  
Author(s):  
Ch Ramakrishna ◽  
G A.E.Satish Kumar ◽  
P Chandra Sekhar Reddy

This paper presents a band notched WLAN self complementaryultra wide band antenna for wireless applications. The proposed antenna encounters a return loss (RL) less than -10dB for entire ultra wideband frequency range except band notched frequency. This paper proposes a hexagon shape patch, edge feeding, self complementary technique and defective ground structure. The antenna has an overall dimensionof 28.3mm × 40mm × 2mm, builton  substrate FR4 with a relative dielectric permittivity 4.4. And framework is simulated finite element method with help of high frequency structured simulator HFSSv17.2.the proposed antenna achieves a impedance bandwidth of 8.6GHz,  band rejected WLAN frequency range 5.6-6.5 GHz with  vswr is less than 2.


2012 ◽  
Vol 598 ◽  
pp. 473-476 ◽  
Author(s):  
Yong Mei Guo ◽  
Wei Chen

Five SBS modified asphalts and one base asphalt were selected to carry out frequency sweeps over a wider frequency range using the dynamic shear rheometer (DSR). Six asphalt binders were subjected to sinusoidal loading at 30°C-90°C within the linear viscoelastic limits, and master curves of complex modulus (G*) and phase angle (δ) could be constructed by means of the time-temperature superposition principle (TTSP). The results show that the G* values of SBS modified asphalts are significantly greater than those of base asphalt at low frequencies, but are slightly smaller at high frequencies. Compared with the base asphalt, SBS modified asphalts have narrower master curves of complex modulus, and their phase angles are much smaller within the whole frequency range. This indicates that various properties of SBS modified asphalts, such as high-temperature property, low-temperature property, temperature susceptibility and elastic recoverability, are superior to those of the base asphalt. The G* values of the rolling thin-film oven (RTFO) aged asphalt are larger than those of the unaged asphalt in the whole range of frequencies, demonstrating that the anti-rutting performance of asphalt binder is improved after short-term aging.


2007 ◽  
Vol 38 (7) ◽  
pp. 11-17
Author(s):  
Ronald M. Aarts

Conventionally, the ultimate goal in loudspeaker design has been to obtain a flat frequency response over a specified frequency range. This can be achieved by carefully selecting the main loudspeaker parameters such as the enclosure volume, the cone diameter, the moving mass and the very crucial “force factor”. For loudspeakers in small cabinets the results of this design procedure appear to be quite inefficient, especially at low frequencies. This paper describes a new solution to this problem. It consists of the combination of a highly non-linear preprocessing of the audio signal and the use of a so called low-force-factor loudspeaker. This combination yields a strongly increased efficiency, at least over a limited frequency range, at the cost of a somewhat altered sound quality. An analytically tractable optimality criterion has been defined and has been verified by the design of an experimental loudspeaker. This has a much higher efficiency and a higher sensitivity than current low-frequency loudspeakers, while its cabinet can be much smaller.


Sign in / Sign up

Export Citation Format

Share Document