scholarly journals Distant foreground and the Planck-derived Hubble constant

2020 ◽  
Vol 492 (4) ◽  
pp. 5052-5056 ◽  
Author(s):  
V N Yershov ◽  
A A Raikov ◽  
N Yu Lovyagin ◽  
N P M Kuin ◽  
E A Popova

ABSTRACT It is possible to reduce the discrepancy between the local measurement of the cosmological parameter H0 and the value derived from the Planck measurements of the cosmic microwave background (CMB) by considering contamination of the CMB by emission from some medium around distant extragalactic sources, such as extremely cold coarse-grain dust. Though being distant, such a medium would still be in the foreground with respect to the CMB, and, as any other foreground, it would alter the CMB power spectrum. This could contribute to the dispersion of CMB temperature fluctuations. By generating a few random samples of CMB with different dispersions, we have checked that the increased dispersion leads to a smaller estimated value of H0, the rest of the cosmological model parameters remaining fixed. This might explain the reduced value of the Planck-derived parameter H0 with respect to the local measurements. The signature of the distant foreground in the CMB traced by supernovae (SNe) was previously reported by the authors of this paper – we found a correlation between the SN redshifts, zSN, and CMB temperature fluctuations at the SNe locations, TSN. Here we have used the slopes of the regression lines $T_{\rm SN}\, /\, z_{\rm SN}$ corresponding to different Planck wavebands in order to estimate the possible temperature of the distant extragalactic medium, which turns out to be very low, about 5 K. The most likely ingredient of this medium is coarse-grain (grey) dust, which is known to be almost undetectable, except for the effect of dimming remote extragalactic sources.

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Maria Archidiacono ◽  
Elena Giusarma ◽  
Steen Hannestad ◽  
Olga Mena

New measurements of the cosmic microwave background (CMB) by the Planck mission have greatly increased our knowledge about the universe. Dark radiation, a weakly interacting component of radiation, is one of the important ingredients in our cosmological model which is testable by Planck and other observational probes. At the moment, the possible existence of dark radiation is an unsolved question. For instance, the discrepancy between the value of the Hubble constant,H0, inferred from the Planck data and local measurements ofH0can to some extent be alleviated by enlarging the minimalΛCDM model to include additional relativistic degrees of freedom. From a fundamental physics point of view, dark radiation is no less interesting. Indeed, it could well be one of the most accessible windows to physics beyond the standard model, for example, sterile neutrinos. Here, we review the most recent cosmological results including a complete investigation of the dark radiation sector in order to provide an overview of models that are still compatible with new cosmological observations. Furthermore, we update the cosmological constraints on neutrino physics and dark radiation properties focusing on tensions between data sets and degeneracies among parameters that can degrade our information or mimic the existence of extra species.


2021 ◽  
pp. 2150157
Author(s):  
E. Benedetto ◽  
A. Feoli ◽  
A. L. Iannella

Measurements for the expansion rate of the universe disagree. Indeed, local measurements suggest a higher value of the Hubble constant than those performed through the cosmic microwave background. This fact led to a very interesting debate within the scientific community. The paper is not devoted to give solutions to the problem of “Hubble tension”. The aim of this paper is, on the contrary, to deduce the [Formula: see text] cosmological parameter from a theoretical point of view, using only two experimental data: the temperature of CMB today and the temperature of photons near the decoupling time.


2014 ◽  
Vol 10 (S306) ◽  
pp. 139-143
Author(s):  
Ophélia Fabre ◽  
Simon Prunet ◽  
Jean-Philippe Uzan

AbstractThe global shape, or topology, of the universe is not constrained by the equations of General Relativity, which only describe the local universe. As a consequence, the boundaries of space are not fixed and topologies different from the trivial infinite Euclidean space are possible. The cosmic microwave background (CMB) is the most efficient tool to study topology and test alternative models. Multi-connected topologies, such as the 3-torus, are of great interest because they are anisotropic and allow us to test a possible violation of isotropy in CMB data. We show that the correlation function of the coefficients of the expansion of the temperature and polarization anisotropies in spherical harmonics encodes a topological signature. This signature can be used to distinguish an infinite space from a multi-connected space on sizes larger than the diameter of the last scattering surface (DLSS). With the help of the Kullback-Leibler divergence, we set the size of the edge of the biggest distinguishable torus with CMB temperature fluctuations and E-modes of polarization to 1.15 DLSS. CMB temperature fluctuations allow us to detect universes bigger than the observable universe, whereas E-modes are efficient to detect universes smaller than the observable universe.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 404
Author(s):  
Eleonora Di Valentino ◽  
Ankan Mukherjee ◽  
Anjan A. Sen

We investigate the possibility of phantom crossing in the dark energy sector and the solution for the Hubble tension between early and late universe observations. We use robust combinations of different cosmological observations, namely the Cosmic Microwave Background (CMB), local measurement of Hubble constant (H0), Baryon Acoustic Oscillation (BAO) and SnIa for this purpose. For a combination of CMB+BAO data that is related to early universe physics, phantom crossing in the dark energy sector was confirmed at a 95% confidence level and we obtained the constraint H0=71.0−3.8+2.9 km/s/Mpc at a 68% confidence level, which is in perfect agreement with the local measurement by Riess et al. We show that constraints from different combinations of data are consistent with each other and all of them are consistent with phantom crossing in the dark energy sector. For the combination of all data considered, we obtained the constraint H0=70.25±0.78 km/s/Mpc at a 68% confidence level and the phantom crossing happening at the scale factor am=0.851−0.031+0.048 at a 68% confidence level.


2008 ◽  
Vol 23 (17n20) ◽  
pp. 1489-1497 ◽  
Author(s):  
LUNG-YIH CHIANG ◽  
PAVEL D. NASELSKY ◽  
PETER COLES

Low quadrupole power in the cosmic microwave background (CMB) temperature anisotropies has been a puzzle since WMAP data release. In this talk I will demonstrate that the minimum variance optimization (MVO), a methodology used by many authors including the WMAP science team to separate the CMB from foreground contamination, serves not only to extract the CMB, but to subtract the “cosmic covariance”, an intrinsic correlation between the CMB and the foregrounds. Such subtraction induces low variance in the signal via MVO, which in turn propagates into the multipoles, causing a quadrupole deficit with more than 90% CL. As we do not know the CMB and the foregrounds a priori, and their correlation is subtracted by the MVO in any case, there is therefore an unknown error in the quadrupole power even before the cosmic variance interpretation. We combine the MVO and Monte Carlo simulations, assuming CMB is a Gaussian random field, and the estimated quadrupole power falls in [308.13, 401.97] μ K 2 (at 1 − σ level).


Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 372 ◽  
Author(s):  
Ivan de Martino

Decaying Dark Energy models modify the background evolution of the most common observables, such as the Hubble function, the luminosity distance and the Cosmic Microwave Background temperature–redshift scaling relation. We use the most recent observationally-determined datasets, including Supernovae Type Ia and Gamma Ray Bursts data, along with H ( z ) and Cosmic Microwave Background temperature versus z data and the reduced Cosmic Microwave Background parameters, to improve the previous constraints on these models. We perform a Monte Carlo Markov Chain analysis to constrain the parameter space, on the basis of two distinct methods. In view of the first method, the Hubble constant and the matter density are left to vary freely. In this case, our results are compatible with previous analyses associated with decaying Dark Energy models, as well as with the most recent description of the cosmological background. In view of the second method, we set the Hubble constant and the matter density to their best fit values obtained by the Planck satellite, reducing the parameter space to two dimensions, and improving the existent constraints on the model’s parameters. Our results suggest that the accelerated expansion of the Universe is well described by the cosmological constant, and we argue that forthcoming observations will play a determinant role to constrain/rule out decaying Dark Energy.


2014 ◽  
Vol 14 (14) ◽  
pp. 7341-7365 ◽  
Author(s):  
A. Cirisan ◽  
B. P. Luo ◽  
I. Engel ◽  
F. G. Wienhold ◽  
M. Sprenger ◽  
...  

Abstract. Observations of high supersaturations with respect to ice inside cirrus clouds with high ice water content (> 0.01 g kg−1) and high crystal number densities (> 1 cm−3) are challenging our understanding of cloud microphysics and of climate feedback processes in the upper troposphere. However, single measurements of a cloudy air mass provide only a snapshot from which the persistence of ice supersaturation cannot be judged. We introduce here the "cirrus match technique" to obtain information about the evolution of clouds and their saturation ratio. The aim of these coordinated balloon soundings is to analyze the same air mass twice. To this end the standard radiosonde equipment is complemented by a frost point hygrometer, "SnowWhite", and a particle backscatter detector, "COBALD" (Compact Optical Backscatter AerosoL Detector). Extensive trajectory calculations based on regional weather model COSMO (Consortium for Small-Scale Modeling) forecasts are performed for flight planning, and COSMO analyses are used as a basis for comprehensive microphysical box modeling (with grid scale of 2 and 7 km, respectively). Here we present the results of matching a cirrus cloud to within 2–15 km, realized on 8 June 2010 over Payerne, Switzerland, and a location 120 km downstream close to Zurich. A thick cirrus cloud was detected over both measurement sites. We show that in order to quantitatively reproduce the measured particle backscatter ratios, the small-scale temperature fluctuations not resolved by COSMO must be superimposed on the trajectories. The stochastic nature of the fluctuations is captured by ensemble calculations. Possibilities for further improvements in the agreement with the measured backscatter data are investigated by assuming a very slow mass accommodation of water on ice, the presence of heterogeneous ice nuclei, or a wide span of (spheroidal) particle shapes. However, the resulting improvements from these microphysical refinements are moderate and comparable in magnitude with changes caused by assuming different regimes of temperature fluctuations for clear-sky or cloudy-sky conditions, highlighting the importance of proper treatment of subscale fluctuations. The model yields good agreement with the measured backscatter over both sites and reproduces the measured saturation ratios with respect to ice over Payerne. Conversely, the 30% in-cloud supersaturation measured in a massive 4 km thick cloud layer over Zurich cannot be reproduced, irrespective of the choice of meteorological or microphysical model parameters. The measured supersaturation can only be explained by either resorting to an unknown physical process, which prevents the ice particles from consuming the excess humidity, or – much more likely – by a measurement error, such as a contamination of the sensor housing of the SnowWhite hygrometer by a precipitation drop from a mixed-phase cloud just below the cirrus layer or from some very slight rain in the boundary layer. This uncertainty calls for in-flight checks or calibrations of hygrometers under the special humidity conditions in the upper troposphere.


Author(s):  
Archana Dixit ◽  
Anirudh Pradhan ◽  
Dinesh Chandra Maurya

In this paper, we have investigated the physical behavior of cosmological models in modified Teleparallel gravity with a general function [Formula: see text] where [Formula: see text] and [Formula: see text] are model parameters and [Formula: see text] is the torsion scalar. We have considered a homogeneous and isotropic Friedman universe filled with perfect fluid. We have derived the deceleration parameter [Formula: see text] in terms of equation of state (EoS) parameter [Formula: see text] and Hubble parameter [Formula: see text]. We have investigated the variation of [Formula: see text] over the observed values of Hubble constant in various observations within the range of redshift [Formula: see text]. Also, we have studied effective energy density [Formula: see text], effective pressure [Formula: see text] and effective EoS parameter [Formula: see text]. We have observed that the second term of [Formula: see text] function behaves just like variable cosmological term [Formula: see text] ([Formula: see text]) at late-time universe and causes the acceleration in expansion and works just like dark energy candidates. Also, we have evaluated the age of the present universe for various stages of matter [Formula: see text] and various [Formula: see text] functions.


2020 ◽  
Vol 501 (1) ◽  
pp. 784-801 ◽  
Author(s):  
Philipp Denzel ◽  
Jonathan P Coles ◽  
Prasenjit Saha ◽  
Liliya L R Williams

ABSTRACT We present a determination of the Hubble constant from the joint, free-form analysis of eight strongly, quadruply lensing systems. In the concordance cosmology, we find $H_0{} = 71.8^{+3.9}_{-3.3}\, \mathrm{km}\, \mathrm{s}^{-1}\, \mathrm{Mpc}^{-1}{}{}$ with a precision of $4.97{{\ \rm per\ cent}}$. This is in agreement with the latest measurements from supernovae Type Ia and Planck observations of the cosmic microwave background. Our precision is lower compared to these and other recent time-delay cosmography determinations, because our modelling strategies reflect the systematic uncertainties of lensing degeneracies. We furthermore are able to find reasonable lensed image reconstructions by constraining to either value of H0 from local and early Universe measurements. This leads us to conclude that current lensing constraints on H0 are not strong enough to break the ‘Hubble tension’ problem of cosmology.


2019 ◽  
Vol 490 (1) ◽  
pp. 1406-1414 ◽  
Author(s):  
Suresh Kumar ◽  
Rafael C Nunes ◽  
Santosh Kumar Yadav

ABSTRACT Dark matter (DM) as a pressureless perfect fluid provides a good fit of the standard Λ cold dark matter (ΛCDM) model to the astrophysical and cosmological data. In this paper, we investigate two extended properties of DM: a possible time dependence of the equation of state of DM via Chevallier–Polarski–Linder parametrization, wdm = wdm0 + wdm1(1 − a), and the constant non-null sound speed $\hat{c}^2_{\rm s,dm}$. We analyse these DM properties on top of the base ΛCDM model by using the data from Planck cosmic microwave background (CMB) temperature and polarization anisotropy, baryonic acoustic oscillations (BAOs), and the local value of the Hubble constant from the Hubble Space Telescope (HST). We find new and robust constraints on the extended free parameters of DM. The most tight constraints are imposed by CMB+BAO data, where the three parameters wdm0, wdm1, and $\hat{c}^2_{\rm s,dm}$ are, respectively, constrained to be less than 1.43 × 10−3, 1.44 × 10−3, and 1.79 × 10−6 at 95 per cent CL. All the extended parameters of DM show consistency with zero at 95 per cent CL, indicating no evidence beyond the CDM paradigm. We notice that the extended properties of DM significantly affect several parameters of the base ΛCDM model. In particular, in all the analyses performed here, we find significantly larger mean values of H0 and lower mean values of σ8 in comparison to the base ΛCDM model. Thus, the well-known H0 and σ8 tensions might be reconciled in the presence of extended DM parameters within the ΛCDM framework. Also, we estimate the warmness of DM particles as well as its mass scale, and find a lower bound: ∼500 eV from our analyses.


Sign in / Sign up

Export Citation Format

Share Document