scholarly journals A limit on Planck-scale froth with ESPRESSO

2020 ◽  
Vol 494 (4) ◽  
pp. 4884-4890
Author(s):  
Ryan Cooke ◽  
Louise Welsh ◽  
Michele Fumagalli ◽  
Max Pettini

ABSTRACT Some models of quantum gravity predict that the very structure of space–time is ‘frothy’ due to quantum fluctuations. Although the effect is expected to be tiny, if these space–time fluctuations grow over a large distance, the initial state of a photon, such as its energy, is gradually washed out as the photon propagates. Thus, in these models, even the most monochromatic light source would gradually disperse in energy due to space–time fluctuations over large distances. In this paper, we use science verification observations obtained with ESPRESSO at the Very Large Telescope to place a novel bound on the growth of space–time fluctuations. To achieve this, we directly measure the width of a narrow Fe ii absorption line produced by a quiescent gas cloud at redshift $z$ ≃ 2.34, corresponding to a comoving distance of ≃5.8 Gpc. Using a heuristic model where the energy fluctuations grow as σE/E = (E/EP)α, where EP ≃ 1.22 × 1028 eV is the Planck energy, we rule out models with α ≤ 0.634, including models where the quantum fluctuations grow as a random walk process (α = 0.5). Finally, we present a new formalism where the uncertainty accrued at discrete space–time steps is drawn from a continuous distribution. We conclude, if photons take discrete steps through space–time and accumulate Planck-scale uncertainties at each step, then our ESPRESSO observations require that the step size must be at least ≳ 1013.2lP, where lP is the Planck length.

2012 ◽  
Vol 21 (10) ◽  
pp. 1250080
Author(s):  
JAKUB MIELCZAREK ◽  
MICHAŁ KAMIONKA

In this paper, we investigate power spectrum of a smoothed scalar field. The smoothing leads to regularization of the UV divergences and can be related with the internal structure of the considered field or the space itself. We perform Gaussian smoothing to the quantum fluctuations generated during the phase of cosmic inflation. We study whether this effect can be probed observationally and conclude that the modifications of the power spectrum due to the smoothing on the Planck scale are negligible and far beyond the observational abilities. Subsequently, we investigate whether smoothing in any other form can be probed observationally. We introduce phenomenological smoothing factor e-k2σ2 to the inflationary spectrum and investigate its effects on the spectrum of CMB anisotropies and polarization. We show that smoothing can lead to suppression of high multipoles in the spectrum of the CMB. Based on seven years observations of WMAP satellite we indicate that the present scale of high multipoles suppression is constrained by σ < 3.19 Mpc (95% CL). This corresponds to the constraint σ < 100 μm at the end of inflation. Despite this value is far above the Planck scale, other processes of smoothing can be possibly studied with this constraint, as decoherence or diffusion of primordial perturbations.


Author(s):  
Espen Haug

We have recently presented a unified quantum gravity theory [1]. Here we extend on that work and present an even simpler version of that theory. For about hundred years, modern physics has not been able to build a bridge between quantum mechanics and gravity. However, a solution may be found here; we present our quantum gravity theory, which is rooted in indivisible particles where matter and gravity are related to collisions and can be described by collision space-time. In this paper, we also show that we can formulate a quantum wave equation rooted in collision space-time, which is equivalent to mass and energy.The beauty of our theory is that most of the main equations that currently exist in physics are not changed (in terms of predictions), except at the Planck scale. The Planck scale is directly linked to gravity and gravity is, surprisingly, actually a Lorentz symmetry as well as a form of Heisenberg uncertainty break down at the Planck scale. Our theory gives a dramatic simplification of many physics formulas without altering the output predictions. The relativistic wave equation, the relativistic energy momentum relation, and Minkowski space can all be represented by simpler equations when we understand mass at a deeper level. This not attained at a cost, but rather a reflection of the benefit in having gravity and electromagnetism unified under the same theory.


2019 ◽  
Vol 9 (3) ◽  
pp. 611 ◽  
Author(s):  
Qiu Yang ◽  
Kyeongnak Lee ◽  
Byeongil Kim

A digital adaptive filtering system is applied to various fields such as current disturbance, noise cancellation, and active vibration and noise control. The least mean squares (LMS) algorithm is widely adopted, owing to its simplicity and low computational burden. A limitation of the LMS algorithm with fixed step size is the trade-off between convergence speed and stability. Several studies have tried to overcome this limitation by varying the step size according to filter input and error; however, the related algorithms with variable step size have not been suitable for signals with complex frequency spectra. As the error decreases, the quality of the output signal deteriorates due to the increase in the higher-order components, depending on the characteristics of the algorithm. Therefore, a novel adaptive filtering algorithm was proposed to overcome these drawbacks. It increased the stability of the system by decreasing the step size using an exponential function. In addition, the error was reduced through normalization using the power of the input signal in the initial state, and the misadjustments in the system were adjusted properly by introducing an energy autocorrelation function of instantaneous error. Furthermore, a novel multi-staged adaptive LMS (MSA-LMS) algorithm was introduced and applied to active periodic structures. The proposed algorithm was validated by simulation and observed to be superior to the conventional LMS algorithms. The results of this study can be applied to active control systems for the reduction of vibration and noise signals with complex spectra in next-generation powertrains, such as hybrid and electric vehicles.


1999 ◽  
Vol 14 (26) ◽  
pp. 4079-4120 ◽  
Author(s):  
LUIS J. GARAY

In this work, I review some aspects concerning the evolution of quantum low-energy fields in a foamlike space–time, with involved topology at the Planck scale but with a smooth metric structure at large length scales, as follows. Quantum gravitational fluctuations may induce a minimum length thus introducing an additional source of uncertainty in physics. The existence of this resolution limit casts doubts on the metric structure of space–time at the Planck scale and opens a doorway to nontrivial topologies, which may dominate Planck scale physics. This foamlike structure of space–time may show up in low-energy physics through loss of quantum coherence and mode-dependent energy shifts, for instance, which might be observable. Space–time foam introduces non-local interactions that can be modeled by a quantum bath, and low-energy fields evolve according to a master equation that displays such effects. Similar laws are also obtained for quantum mechanical systems evolving according to good real clocks, although the underlying Hamiltonian structure in this case establishes serious differences among both scenarios.


2019 ◽  
Vol 491 (2) ◽  
pp. 2057-2074 ◽  
Author(s):  
Emma K Lofthouse ◽  
Michele Fumagalli ◽  
Matteo Fossati ◽  
John M O’Meara ◽  
Michael T Murphy ◽  
...  

ABSTRACT We present the design, methods, and first results of the MUSE Analysis of Gas around Galaxies (MAGG) survey, a large programme on the Multi-Unit Spectroscopic Explorer (MUSE) instrument at the Very Large Telescope (VLT), which targets 28 z &gt; 3.2 quasars to investigate the connection between optically thick gas and galaxies at z ∼ 3–4. MAGG maps the environment of 52 strong absorption line systems at z ≳ 3, providing the first statistical sample of galaxies associated with gas-rich structures in the early Universe. In this paper, we study the galaxy population around a very metal poor gas cloud at z ≈ 3.53 towards the quasar J124957.23−015928.8. We detect three Lyα emitters within $\lesssim 200~\rm km~s^{-1}$ of the cloud redshift, at projected separations $\lesssim 185~\rm ~kpc$ (physical). The presence of star-forming galaxies near a very metal-poor cloud indicates that metal enrichment is still spatially inhomogeneous at this redshift. Based on its very low metallicity and the presence of nearby galaxies, we propose that the most likely scenario for this Lyman Limit System (LLS) is that it lies within a filament which may be accreting on to a nearby galaxy. Taken together with the small number of other LLSs studied with MUSE, the observations to date show a range of different environments near strong absorption systems. The full MAGG survey will significantly expand this sample and enable a statistical analysis of the link between gas and galaxies to pin down the origin of these diverse environments at z ≈ 3–4.


1996 ◽  
Vol 168 ◽  
pp. 569-570
Author(s):  
Alexander Gusev

At the last time the concept of the curved space-time as the some medium with stress tensor σαβon the right part of Einstein equation is extensively studied in the frame of the Sakharov - Wheeler metric elasticity(Sakharov (1967), Wheeler (1970)). The physical cosmology pre- dicts a different phase transitions (Linde (1990), Guth (1991)). In the frame of Relativistic Theory of Finite Deformations (RTFD) (Gusev (1986)) the transition from the initial stateof the Universe (Minkowskian's vacuum, quasi-vacuum(Gliner (1965), Zel'dovich (1968)) to the final stateof the Universe(Friedmann space, de Sitter space) has the form of phase transition(Gusev (1989) which is connected with different space-time symmetry of the initial and final states of Universe(from the point of view of isometric groupGnof space). In the RTFD (Gusev (1983), Gusev (1989)) the space-time is described by deformation tensorof the three-dimensional surfaces, and the Einstein's equations are viewed as the constitutive relations between the deformations ∊αβand stresses σαβ. The vacuum state of Universe have the visible zero physical characteristics and one is unsteady relatively quantum and topological deformations (Gunzig &amp; Nardone (1989), Guth (1991)). Deformations of vacuum state, identifying with empty Mikowskian's space are described the deformations tensor ∊αβ, wherethe metrical tensor of deformation state of 3-geometry on the hypersurface, which is ortogonaled to the four-velocityis the 3 -geometry of initial state,is a projection tensor.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2570 ◽  
Author(s):  
Hao Wang ◽  
Qing Chang ◽  
Yong Xu ◽  
Xianxu Li

In the estimation of the direction of arrival (DOA) for interference signals, the direction-finding error of the multiple signal classification (MUSIC) algorithm will increase in the case of multiple interferences or when the interfering signal power is weak. In this paper, a space-time conversion MUSIC (STC-MUSIC) algorithm is proposed, and the concept of a focusing parameter is introduced to improve the performance of the DOA estimation. Meanwhile, a method of variable step size peak search is proposed to reduce the amount of calculation of the STC-MUSIC algorithm. The final simulation and experimental results show that the STC-MUSIC algorithm improves the purity of the noise subspace effectively, thus improving the precision and robustness of the DOA estimation for interference signals significantly. In comparison to traditional algorithms, the convergence, stability, root mean square error (RMSE) and other performance characteristics are improved greatly.


Sign in / Sign up

Export Citation Format

Share Document