scholarly journals Periodic transit timing variations and refined system parameters of the exoplanet XO-6b

Author(s):  
Zoltán Garai ◽  
Theodor Pribulla ◽  
Richard Komžík ◽  
Emil Kundra ◽  
Ľubomír Hambálek ◽  
...  

Abstract Only a few exoplanets are known to orbit around fast rotating stars. One of them is XO-6b, which orbits an F5V-type star. Shortly after the discovery, we started multicolor photometric and radial-velocity follow-up observations of XO-6b, using the telescopes of Astronomical Institute of the Slovak Academy of Sciences. Our main scientific goals were to better characterize the planetary system and to search for transit timing variations. We refined several planetary and orbital parameters. Based on our measurements, the planet XO-6b seems to be about 10% larger, which is, however, only about 2σ difference, but its orbit inclination angle, with respect to the plane of the sky, seems to be significantly smaller, than it was determined originally by the discoverers. In this case we found about 9.5σ difference. Moreover, we observed periodic transit timing variations of XO-6b with a semi-amplitude of about 14 min and with a period of about 450 days. There are two plausible explanations of such transit timing variations: (1) a third object in the system XO-6 causing light-time effect, or (2) resonant perturbations between the transiting planet XO-6b and another unknown low-mass planet in this system. From the O-C diagram we derived that the assumed third object in the system should have a stellar mass, therefore significant variations are expected in the radial-velocity measurements of XO-6. Since this is not the case, and since all attempts to fit radial velocities and O-C data simultaneously failed to provide a consistent solution, more realistic is the second explanation.

1999 ◽  
Vol 170 ◽  
pp. 410-415
Author(s):  
H.-H. Bernstein

AbstractRadial velocity measurements are a well known high-precision method to obtain the orbits of extrasolar planets or brown dwarfs. However, this method is not able to determine the inclination which could be derived from astrometry. The astrometric effects of those objects are very minute, wherefore the interest of astronomers in astrometric techniques was very poor. This situation changes fundamentally since space astrometry observations are available. HIPPARCOS demonstrated the power of space astrometry and the extremely high accuracy of the DIVA, and especially the GAIA observations allows one to detect Jupiter- and Earth- like objects. The optimal estimation of the parameters of the orbit of extrasolar planets or brown dwarfs is a combination of radial velocity measurements and space astrometry observations. Here it is possible to overcome problems which are inherent in both observation methods, so space astrometry complements radial velocity observations and vice versa. This paper gives a method for the parameter estimation using both types of measurements.


Author(s):  
J. R. Barnes ◽  
C. A. Haswell

AbstractAriel’s ambitious goal to survey a quarter of known exoplanets will transform our knowledge of planetary atmospheres. Masses measured directly with the radial velocity technique are essential for well determined planetary bulk properties. Radial velocity masses will provide important checks of masses derived from atmospheric fits or alternatively can be treated as a fixed input parameter to reduce possible degeneracies in atmospheric retrievals. We quantify the impact of stellar activity on planet mass recovery for the Ariel mission sample using Sun-like spot models scaled for active stars combined with other noise sources. Planets with necessarily well-determined ephemerides will be selected for characterisation with Ariel. With this prior requirement, we simulate the derived planet mass precision as a function of the number of observations for a prospective sample of Ariel targets. We find that quadrature sampling can significantly reduce the time commitment required for follow-up RVs, and is most effective when the planetary RV signature is larger than the RV noise. For a typical radial velocity instrument operating on a 4 m class telescope and achieving 1 m s−1 precision, between ~17% and ~ 37% of the time commitment is spent on the 7% of planets with mass Mp < 10 M⊕. In many low activity cases, the time required is limited by asteroseismic and photon noise. For low mass or faint systems, we can recover masses with the same precision up to ~3 times more quickly with an instrumental precision of ~10 cm s−1.


2012 ◽  
Vol 8 (S293) ◽  
pp. 201-203
Author(s):  
Masashi Omiya ◽  
Bun'ei Sato ◽  
Hiroki Harakawa ◽  
Masayuki Kuzuhara ◽  
Teruyuki Hirano ◽  
...  

AbstractWe have a plan to conduct a Doppler planet search for low-mass planets around nearby middle-to-late M dwarfs using IRD. IRD is the near-infrared high-precision radial velocity instrument for the Subaru 8.2-m telescope. We expect to achieve the accuracy of the radial velocity measurements of 1 m/s using IRD with a frequency comb as a wavelengh calibrator. Thus, we would detect super-Earths in habitable zone and low-mass rocky planets in close-in orbits around late-M dwarfs. In this survey, we aim to understand and discuss statistical properties of low-mass planets around low-mass M dwarfs compared with those derived from theoretical simulations.


2014 ◽  
Vol 13 (2) ◽  
pp. 155-157 ◽  
Author(s):  
R. D. Haywood ◽  
A. Collier Cameron ◽  
D. Queloz ◽  
S.C.C. Barros ◽  
M. Deleuil ◽  
...  

AbstractThe majority of extra-solar planets have been discovered (or confirmed after follow-up) through radial-velocity (RV) surveys. Using ground-based spectrographs such as High Accuracy Radial Velocity Planetary Search (HARPS) and HARPS-North, it is now possible to detect planets that are only a few times the mass of the Earth. However, the presence of dark spots on the stellar surface produces RV signals that are very similar in amplitude to those caused by orbiting low-mass planets. Disentangling these signals has thus become the biggest challenge in the detection of Earth-mass planets using RV surveys. To do so, we use the star's lightcurve to model the RV variations produced by spots. Here we present this method and show the results of its application to CoRoT-7.


2008 ◽  
Vol 4 (S253) ◽  
pp. 157-161 ◽  
Author(s):  
James P. Lloyd ◽  
Agnieszka Czeszumska ◽  
Jerry Edelstein ◽  
David Erskine ◽  
Michael Feuerstein ◽  
...  

AbstractThe TEDI (TripleSpec - Exoplanet Discovery Instrument) is a dedicated instrument for the near-infrared radial velocity search for planetary companions to low-mass stars with the goal of achieving meters-per-second radial velocity precision. Heretofore, such planet searches have been limited almost entirely to the optical band and to stars that are bright in this band. Consequently, knowledge about planetary companions to the populous but visibly faint low-mass stars is limited. In addition to the opportunity afforded by precision radial velocity searches directly for planets around low mass stars, transits around the smallest M dwarfs offer a chance to detect the smallest possible planets in the habitable zones of the parent stars. As has been the the case with followup of planet candidates detected by the transit method requiring radial velocity confirmation, the capability to undertake efficient precision radial velocity measurements of mid-late M dwarfs will be required. TEDI has been commissioned on the Palomar 200” telescope in December 2007, and is currently in a science verification phase.


2019 ◽  
Vol 623 ◽  
pp. A164 ◽  
Author(s):  
R. Laugier ◽  
F. Martinache ◽  
A. Ceau ◽  
D. Mary ◽  
M. N’Diaye ◽  
...  

Kernel-phase observables extracted from mid- to high-Strehl images are proving to be a powerful tool to probe within a few angular resolution elements of point sources. The attainable contrast is limited, however, by the dynamic range of the imaging sensors. The Fourier interpretation of images with pixels exposed beyond the saturation has so far been avoided. In cases where the image is dominated by the light of a point source, we show that we can use an interpolation to reconstruct the otherwise lost pixels with an accuracy sufficient to enable the extraction of kernel-phases from the patched image. We demonstrate the usability of our method by applying it to archive images of the Gl 494AB system taken with the Hubble Space Telescope in 1997. Using this new data point along with other resolved observations and radial velocity measurements, we produce improved constraints on the orbital parameters of the system, and consequently the masses of its components.


2009 ◽  
Vol 5 (H15) ◽  
pp. 690-690
Author(s):  
Ronaldo Da Silva ◽  
Adriana Silva-Valio

AbstractWe used the method of Silva & Cruz (2006), which distinguishes between planetary and stellar companions by fitting transit light curves, to select the most promising CoRoT candidates to be monitored with radial-velocity measurements. Testing this method on the light curves of confirmed CoRoT exoplanetary systems shows that the estimated radius for such planets is smaller than 2 RJup, while for most of the light curves in which no planet has been detected, the secondary companion has an estimated radius larger than 2 RJup. We present preliminary results concerning other light curves for which no planet has been detected yet.


2020 ◽  
Vol 639 ◽  
pp. A7 ◽  
Author(s):  
A. Jorissen ◽  
H. Van Winckel ◽  
L. Siess ◽  
A. Escorza ◽  
D. Pourbaix ◽  
...  

The origin of the Li-rich K giants is still highly debated. Here, we investigate the incidence of binarity among this family from a nine-year radial-velocity monitoring of a sample of 11 Li-rich K giants using the HERMES spectrograph attached to the 1.2 m Mercator Telescope. A sample of 13 non-Li-rich giants (8 of them being surrounded by dust according to IRAS, WISE, and ISO data) was monitored alongside. When compared to the binary frequency in a reference sample of 190 K giants (containing 17.4% of definite spectroscopic binaries – SB – and 6.3% of possible spectroscopic binaries – SB?), the binary frequency appears normal among the Li-rich giants (2/11 definite binaries plus 2 possible binaries, or 18.2% SB + 18.2% SB?), after taking account of the small sample size through the hypergeometric probability distribution. Therefore, there appears to be no causal relationship between Li enrichment and binarity. Moreover, there is no correlation between Li enrichment and the presence of circumstellar dust, and the only correlation that could be found between Li enrichment and rapid rotation is that the most Li-enriched K giants appear to be fast-rotating stars. However, among the dusty K giants, the binary frequency is much higher (4/8 definite binaries plus 1 possible binary). The remaining 3 dusty K giants suffer from a radial-velocity jitter, as is expected for the most luminous K giants, which these are.


2014 ◽  
Vol 9 (S307) ◽  
pp. 188-193
Author(s):  
S. J. A. J. Salmon ◽  
J. Montalbán ◽  
D. R. Reese ◽  
M.-A. Dupret ◽  
P. Eggenberger

AbstractA recent photometric survey in the NGC 3766 cluster led to the detection of stars presenting an unexpected variability. They lie in a region of the Hertzsprung-Russell (HR) diagram where no pulsation are theoretically expected, in between the δ Scuti and slowly pulsating B (SPB) star instability domains. Their variability periods, between ~0.1–0.7 d, are outside the expected domains of these well-known pulsators. The NCG 3766 cluster is known to host fast rotating stars. Rotation can significantly affect the pulsation properties of stars and alter their apparent luminosity through gravity darkening. Therefore we inspect if the new variable stars could correspond to fast rotating SPB stars. We carry out instability and visibility analysis of SPB pulsation modes within the frame of the traditional approximation. The effects of gravity darkening on typical SPB models are next studied. We find that at the red border of the SPB instability strip, prograde sectoral (PS) modes are preferentially excited, with periods shifted in the 0.2–0.5 d range due to the Coriolis effect. These modes are best seen when the star is seen equator-on. For such inclinations, low-mass SPB models can appear fainter due to gravity darkening and as if they were located between the δ Scuti and SPB instability strips.


2021 ◽  
Vol 503 (4) ◽  
pp. 5504-5521
Author(s):  
L Cabona ◽  
P T P Viana ◽  
M Landoni ◽  
J P Faria

ABSTRACT Radial-velocity follow-up of stars harbouring transiting planets detected by TESS is expected to require very large amounts of expensive telescope time in the next few years. Therefore, scheduling strategies should be implemented to maximize the amount of information gathered about the target planetary systems. We consider myopic and non-myopic versions of a novel uniform-in-phase scheduler, as well as a random scheduler, and compare these scheduling strategies with respect to the bias, accuracy and precision achieved in recovering the mass and orbital parameters of transiting and non-transiting planets. This comparison is carried out based on realistic simulations of radial-velocity follow-up with ESPRESSO of a sample of 50 TESS target stars, with simulated planetary systems containing at least one transiting planet with a radius below 4R⊕. Radial-velocity data sets were generated under reasonable assumptions about their noise component, including that resulting from stellar activity, and analysed using a fully Bayesian methodology. We find the random scheduler leads to a more biased, less accurate, and less precise, estimation of the mass of the transiting exoplanets. No significant differences are found between the results of the myopic and non-myopic implementations of the uniform-in-phase scheduler. With only about 22 radial velocity measurements per data set, our novel uniform-in-phase scheduler enables an unbiased (at the level of 1 per cent) measurement of the masses of the transiting planets, while keeping the average relative accuracy and precision around 16 per cent and 23 per cent, respectively. The number of non-transiting planets detected is similar for all the scheduling strategies considered, as well as the bias, accuracy and precision with which their masses and orbital parameters are recovered.


Sign in / Sign up

Export Citation Format

Share Document