scholarly journals Low-mass halo perturbations in strong gravitational lenses at redshift z ∼ 0.5 are consistent with CDM

2019 ◽  
Vol 485 (2) ◽  
pp. 2179-2193 ◽  
Author(s):  
E Ritondale ◽  
S Vegetti ◽  
G Despali ◽  
M W Auger ◽  
L V E Koopmans ◽  
...  

ABSTRACT We use a sample of 17 strong gravitational lens systems from the BELLS GALLERY survey to quantify the amount of low-mass dark matter haloes within the lensing galaxies and along their lines of sight, and to constrain the properties of dark matter. Based on a detection criterion of 10σ, we report no significant detection in any of the lenses. Using the sensitivity function at the 10σ level, we have calculated the predicted number of detectable cold dark matter (CDM) line-of-sight haloes to be μl = 1.17 ± 1.08, in agreement with our null detection. Assuming a detection sensitivity that improved to the level implied by a 5σ threshold, the expected number of detectable line-of-sight haloes rises to μl = 9.0 ± 3.0. Whilst the current data find zero detections at this sensitivity level (which has a probability of P$^{{\rm 5}\sigma }_{{\rm CDM}}(n_{\rm det}=0)$ = 0.0001 and would be in strong tension with the CDM framework), we find that such a low-detection threshold leads to many spurious detections and non-detections and therefore the current lack of detections is unreliable and requires data with improved sensitivity. Combining this sample with a subsample of 11 SLACS lenses, we constrain the half-mode mass to be log (Mhm) < 12.26 at the 2σ level. The latter is consistent with resonantly produced sterile neutrino masses ms < 0.8 keV at any value of the lepton asymmetry at the 2σ level.

2019 ◽  
Vol 491 (4) ◽  
pp. 6077-6101 ◽  
Author(s):  
Daniel Gilman ◽  
Simon Birrer ◽  
Anna Nierenberg ◽  
Tommaso Treu ◽  
Xiaolong Du ◽  
...  

ABSTRACT The free-streaming length of dark matter depends on fundamental dark matter physics, and determines the abundance and concentration of dark matter haloes on sub-galactic scales. Using the image positions and flux ratios from eight quadruply imaged quasars, we constrain the free-streaming length of dark matter and the amplitude of the subhalo mass function (SHMF). We model both main deflector subhaloes and haloes along the line of sight, and account for warm dark matter free-streaming effects on the mass function and mass–concentration relation. By calibrating the scaling of the SHMF with host halo mass and redshift using a suite of simulated haloes, we infer a global normalization for the SHMF. We account for finite-size background sources, and marginalize over the mass profile of the main deflector. Parametrizing dark matter free-streaming through the half-mode mass mhm, we constrain the thermal relic particle mass mDM corresponding to mhm. At $95 \, {\rm per\, cent}$ CI: mhm < 107.8 M⊙ ($m_{\rm {DM}} \gt 5.2 \ \rm {keV}$). We disfavour $m_{\rm {DM}} = 4.0 \,\rm {keV}$ and $m_{\rm {DM}} = 3.0 \,\rm {keV}$ with likelihood ratios of 7:1 and 30:1, respectively, relative to the peak of the posterior distribution. Assuming cold dark matter, we constrain the projected mass in substructure between 106 and 109 M⊙ near lensed images. At $68 \, {\rm per\, cent}$ CI, we infer $2.0{-}6.1 \times 10^{7}\, {{\rm M}_{\odot }}\,\rm {kpc^{-2}}$, corresponding to mean projected mass fraction $\bar{f}_{\rm {sub}} = 0.035_{-0.017}^{+0.021}$. At $95 \, {\rm per\, cent}$ CI, we obtain a lower bound on the projected mass of $0.6 \times 10^{7} \,{{\rm M}_{\odot }}\,\rm {kpc^{-2}}$, corresponding to $\bar{f}_{\rm {sub}} \gt 0.005$. These results agree with the predictions of cold dark matter.


2019 ◽  
Vol 487 (4) ◽  
pp. 5721-5738 ◽  
Author(s):  
Daniel Gilman ◽  
Simon Birrer ◽  
Tommaso Treu ◽  
Anna Nierenberg ◽  
Andrew Benson

Abstract Strong lensing provides a powerful means of investigating the nature of dark matter as it probes dark matter structure on sub-galactic scales. We present an extension of a forward modelling framework that uses flux ratios from quadruply imaged quasars (quads) to measure the shape and amplitude of the halo mass function, including line-of-sight (LOS) haloes and main deflector subhaloes. We apply this machinery to 50 mock lenses – roughly the number of known quads – with warm dark matter (WDM) mass functions exhibiting free-streaming cut-offs parametrized by the half-mode mass mhm. Assuming cold dark matter (CDM), we forecast bounds on mhm and the corresponding thermal relic particle masses over a range of tidal destruction severity, assuming a particular WDM mass function and mass–concentration relation. With significant tidal destruction, at 2σ we constrain $m_{\rm {hm}}\lt 10^{7.9} \left(10^{8.4}\right) \, \mathrm{M}_{\odot }$, or a 4.4 (3.1) keV thermal relic, with image flux uncertainties from measurements and lens modelling of $2{{\ \rm per\ cent}} \left(6{{\ \rm per\ cent}}\right)$. With less severe tidal destruction we constrain $m_{\rm {hm}}\lt 10^{7} \left(10^{7.4}\right) \, \mathrm{M}_{\odot }$, or an 8.2 (6.2) keV thermal relic. If dark matter is warm, with $m_{\rm {hm}} = 10^{7.7} \, \mathrm{M}_{\odot }$ (5.1 keV), we would favour WDM with $m_{\rm {hm}} \gt 10^{7.7} \, \mathrm{M}_{\odot }$ over CDM with relative likelihoods of 22:1 and 8:1 with flux uncertainties of $2{{\ \rm per\ cent}}$ and $6{{\ \rm per\ cent}}$, respectively. These bounds improve over those obtained by modelling only main deflector subhaloes because LOS objects produce additional flux perturbations, especially for high-redshift systems. These results indicate that ∼50 quads can conclusively differentiate between WDM and CDM.


Author(s):  
Nicola C Amorisco ◽  
James Nightingale ◽  
Qiuhan He ◽  
Aristeidis Amvrosiadis ◽  
Xiaoyue Cao ◽  
...  

Abstract A defining prediction of the cold dark matter (CDM) cosmological model is the existence of a very large population of low-mass haloes. This population is absent in models in which the dark matter particle is warm (WDM). These alternatives can, in principle, be distinguished observationally because halos along the line-of-sight can perturb galaxy-galaxy strong gravitational lenses. Furthermore, the WDM particle mass could be deduced because the cut-off in their halo mass function depends on the mass of the particle. We systematically explore the detectability of low-mass haloes in WDM models by simulating and fitting mock lensed images. Contrary to previous studies, we find that halos are harder to detect when they are either behind or in front of the lens. Furthermore, we find that the perturbing effect of haloes increases with their concentration: detectable haloes are systematically high-concentration haloes, and accounting for the scatter in the mass-concentration relation boosts the expected number of detections by as much as an order of magnitude. Haloes have lower concentration for lower particle masses and this further suppresses the number of detectable haloes beyond the reduction arising from the lower halo abundances alone. Taking these effects into account can make lensing constraints on the value of the mass function cut-off at least an order of magnitude more stringent than previously appreciated.


2021 ◽  
Vol 504 (1) ◽  
pp. 648-653
Author(s):  
Nilanjan Banik ◽  
Jo Bovy

ABSTRACT Stellar tidal streams are sensitive tracers of the properties of the gravitational potential in which they orbit and detailed observations of their density structure can be used to place stringent constraints on fluctuations in the potential caused by, e.g. the expected populations of dark matter subhaloes in the standard cold dark matter (CDM) paradigm. Simulations of the evolution of stellar streams in live N-body haloes without low-mass dark matter subhaloes, however, indicate that streams exhibit significant perturbations on small scales even in the absence of substructure. Here, we demonstrate, using high-resolution N-body simulations combined with sophisticated semi-analytical and simple analytical models, that the mass resolutions of 104–$10^5\, \rm {M}_{\odot }$ commonly used to perform such simulations cause spurious stream density variations with a similar magnitude on large scales as those expected from a CDM-like subhalo population and an order of magnitude larger on small, yet observable, scales. We estimate that mass resolutions of ${\approx}100\, \rm {M}_{\odot }$ (${\approx}1\, \rm {M}_{\odot }$) are necessary for spurious, numerical density variations to be well below the CDM subhalo expectation on large (small) scales. That streams are sensitive to a simulation’s particle mass down to such small masses indicates that streams are sensitive to dark matter clustering down to these low masses if a significant fraction of the dark matter is clustered or concentrated in this way, for example, in MACHO models with masses of 10–$100\, \rm {M}_{\odot }$.


Author(s):  
Alexandres Lazar ◽  
James S Bullock ◽  
Michael Boylan-Kolchin ◽  
Robert Feldmann ◽  
Onur Çatmabacak ◽  
...  

Abstract A promising route for revealing the existence of dark matter structures on mass scales smaller than the faintest galaxies is through their effect on strong gravitational lenses. We examine the role of local, lens-proximate clustering in boosting the lensing probability relative to contributions from substructure and unclustered line-of-sight (LOS) haloes. Using two cosmological simulations that can resolve halo masses of Mhalo ≃ 109 M⊙ (in a simulation box of length Lbox ∼ 100 Mpc) and 107 M⊙ (Lbox ∼ 20 Mpc), we demonstrate that clustering in the vicinity of the lens host produces a clear enhancement relative to an assumption of unclustered haloes that persists to >20 Rvir. This enhancement exceeds estimates that use a two-halo term to account for clustering, particularly within 2 − 5 Rvir. We provide an analytic expression for this excess, clustered contribution. We find that local clustering boosts the expected count of 109 M⊙ perturbing haloes by ${\sim }35{{\ \rm per\ cent}}$ compared to substructure alone, a result that will significantly enhance expected signals for low-redshift (zl ≃ 0.2) lenses, where substructure contributes substantially compared to LOS haloes. We also find that the orientation of the lens with respect to the line of sight (e.g. whether the line of sight passes through the major axis of the lens) can also have a significant effect on the lensing signal, boosting counts by an additional $\sim 50{{\ \rm per\ cent}}$ compared to a random orientations. This could be important if discovered lenses are biased to be oriented along their principal axis.


2020 ◽  
Vol 494 (4) ◽  
pp. 4706-4712 ◽  
Author(s):  
Andrew Robertson ◽  
Richard Massey ◽  
Vincent Eke

ABSTRACT We assess a claim that observed galaxy clusters with mass ${\sim}10^{14} \mathrm{\, M_\odot }$ are more centrally concentrated than predicted in lambda cold dark matter (ΛCDM). We generate mock strong gravitational lensing observations, taking the lenses from a cosmological hydrodynamical simulation, and analyse them in the same way as the real Universe. The observed and simulated lensing arcs are consistent with one another, with three main effects responsible for the previously claimed inconsistency. First, galaxy clusters containing baryonic matter have higher central densities than their counterparts simulated with only dark matter. Secondly, a sample of clusters selected because of the presence of pronounced gravitational lensing arcs preferentially finds centrally concentrated clusters with large Einstein radii. Thirdly, lensed arcs are usually straighter than critical curves, and the chosen image analysis method (fitting circles through the arcs) overestimates the Einstein radii. After accounting for these three effects, ΛCDM predicts that galaxy clusters should produce giant lensing arcs that match those in the observed Universe.


2013 ◽  
Vol 9 (S298) ◽  
pp. 411-411
Author(s):  
Kohei Hayashi ◽  
Masashi Chiba

AbstractWe construct axisymmetric mass models for dwarf spheroidal (dSph) galaxies in the Milky Way to obtain realistic limits on the non-spherical structure of their dark halos. This is motivated by the fact that the observed luminous parts of the dSphs are actually non-spherical and cold dark matter models predict non-spherical virialized dark halos on sub-galactic scales. Applying these models to line-of-sight velocity dispersion profiles along three position angles in six Galactic satellites, we find that the best fitting cases for most of the dSphs yield not spherical but oblate and flattened dark halos. We also find that the mass of the dSphs enclosed within inner 300 pc varies depending on their total luminosities, contrary to the conclusion of previous spherical models. This suggests the importance of considering non-spherical shapes of dark halos in dSph mass models.


2020 ◽  
Vol 497 (3) ◽  
pp. 2941-2953 ◽  
Author(s):  
Anchal Saxena ◽  
Suman Majumdar ◽  
Mohd Kamran ◽  
Matteo Viel

ABSTRACT The nature of dark matter sets the timeline for the formation of first collapsed haloes and thus affects the sources of reionization. Here, we consider two different models of dark matter: cold dark matter (CDM) and thermal warm dark matter (WDM), and study how they impact the epoch of reionization (EoR) and its 21-cm observables. Using a suite of simulations, we find that in WDM scenarios, the structure formation on small scales gets suppressed, resulting in a smaller number of low-mass dark matter haloes compared to the CDM scenario. Assuming that the efficiency of sources in producing ionizing photons remains the same, this leads to a lower number of total ionizing photons produced at any given cosmic time, thus causing a delay in the reionization process. We also find visual differences in the neutral hydrogen (H i) topology and in 21-cm maps in case of the WDM compared to the CDM. However, differences in the 21-cm power spectra, at the same neutral fraction, are found to be small. Thus, we focus on the non-Gaussianity in the EoR 21-cm signal, quantified through its bispectrum. We find that the 21-cm bispectra (driven by the H i topology) are significantly different in WDM models compared to the CDM, even for the same mass-averaged neutral fractions. This establishes that the 21-cm bispectrum is a unique and promising way to differentiate between dark matter models, and can be used to constrain the nature of the dark matter in the future EoR observations.


2001 ◽  
Vol 563 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Weihsueh A. Chiu ◽  
Nickolay Y. Gnedin ◽  
Jeremiah P. Ostriker

Sign in / Sign up

Export Citation Format

Share Document