scholarly journals A multiwavelength analysis of a collection of short-duration GRBs observed between 2012 and 2015

2019 ◽  
Vol 485 (4) ◽  
pp. 5294-5318 ◽  
Author(s):  
S B Pandey ◽  
Y Hu ◽  
Ao J Castro-Tirado ◽  
A S Pozanenko ◽  
R Sánchez-Ramírez ◽  
...  

Abstract We investigate the prompt emission and the afterglow properties of short-duration gamma-ray burst (sGRB) 130603B and another eight sGRB events during 2012–2015, observed by several multiwavelength facilities including the Gran Canarias Telescope 10.4 m telescope. Prompt emission high energy data of the events were obtained by INTEGRAL-SPI-ACS, Swift-BAT, and Fermi-GBM satellites. The prompt emission data by INTEGRAL in the energy range of 0.1–10 MeV for sGRB 130603B, sGRB 140606A, sGRB 140930B, sGRB 141212A, and sGRB 151228A do not show any signature of the extended emission or precursor activity and their spectral and temporal properties are similar to those seen in case of other short bursts. For sGRB 130603B, our new afterglow photometric data constrain the pre-jet-break temporal decay due to denser temporal coverage. For sGRB 130603B, the afterglow light curve, containing both our new and previously published photometric data is broadly consistent with the ISM afterglow model. Modeling of the host galaxies of sGRB 130603B and sGRB 141212A using the LePHARE software supports a scenario in which the environment of the burst is undergoing moderate star formation activity. From the inclusion of our late-time data for eight other sGRBs we are able to: place tight constraints on the non-detection of the afterglow, host galaxy, or any underlying ‘kilonova’ emission. Our late-time afterglow observations of the sGRB 170817A/GW170817 are also discussed and compared with the sub-set of sGRBs.

Author(s):  
P. T. O'Brien ◽  
P. Evans

The dawn of the gravitational-wave (GW) era has sparked a greatly renewed interest into possible links between sources of high-energy radiation and GWs. The most luminous high-energy sources—gamma-ray bursts (GRBs)—have long been considered as very likely sources of GWs, particularly from short-duration GRBs, which are thought to originate from the merger of two compact objects such as binary neutron stars and a neutron star–black hole binary. In this paper, we discuss: (i) the high-energy emission from short-duration GRBs; (ii) what other sources of high-energy radiation may be observed from binary mergers; and (iii) how searches for high-energy electromagnetic counterparts to GW events are performed with current space facilities. While current high-energy facilities, such as Swift and Fermi, play a crucial role in the search for electromagnetic counterparts, new space missions will greatly enhance our capabilities for joint observations. We discuss why such facilities, which incorporate new technology that enables very wide-field X-ray imaging, are required if we are to truly exploit the multi-messenger era. This article is part of a discussion meeting issue ‘The promises of gravitational-wave astronomy’.


2020 ◽  
Vol 496 (1) ◽  
pp. 974-986 ◽  
Author(s):  
H Zhang ◽  
I M Christie ◽  
M Petropoulou ◽  
J M Rueda-Becerril ◽  
D Giannios

ABSTRACT The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotron radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; ≳GeV) remains uncertain. The recent detection of sub-TeV emission from GRB 190114C by the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) raises further debate on what powers the very high energy (VHE; ≳300 GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multiwavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters. Studying GRB 190114C, we find that its afterglow emission in the Fermi-Large Area Telescope (LAT) band is synchrotron dominated. The late-time Fermi-LAT measurement (i.e. t ∼ 104 s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (i.e. ${\lesssim} 3\times 10^{-9}\, {\rm erg\, cm^{-3}}$), making the inverse Compton dominant in the sub-TeV energies.


2019 ◽  
Vol 71 (4) ◽  
Author(s):  
Norisuke Ohmori ◽  
Kazutaka Yamaoka ◽  
Makoto Yamauchi ◽  
Yuji Urata ◽  
Masanori Ohno ◽  
...  

Abstract We have systematically studied the spectral properties of 302 localized gamma-ray bursts (GRBs) observed by the Suzaku wide-band all-sky monitor (WAM) from 2005 August to 2010 December. The energy spectra in the 100–5000 keV range integrated over the entire emission and the 1 s peak were fitted by three models: a single power law, a power law with an exponential cutoff (CPL), and the GRB Band function (GRB). Most of the burst spectra were well fitted by a single power law. The average photon index α was −2.11 and −1.73 for long and short bursts, respectively. For the CPL and GRB models, the low-energy and high-energy photon indices (α and β) for the entire emission spectra were consistent with previous measurements. The averages of the α and β were −0.90 and −2.65 for long-duration GRBs, while the average α was −0.55 and the β was not well constrained for short-duration GRBs. However, the average peak energy Epeak was 645 and 1286 keV for long- and short-duration GRBs respectively, which are higher than previous Fermi/GBM measurements (285 keV and 736 keV). The α and Epeak of the 1 s peak spectra were larger, i.e., the spectra were harder, than the total fluence spectra. Spectral simulations based on Fermi-GBM results suggest that the higher Epeaks measured by the Suzaku WAM could be due to detector selection bias, mainly caused by the limited energy range above 100 keV.


2019 ◽  
Vol 488 (1) ◽  
pp. 902-909
Author(s):  
A A Chrimes ◽  
A J Levan ◽  
E R Stanway ◽  
E Berger ◽  
J S Bloom ◽  
...  

Abstract The number of long gamma-ray bursts (GRBs) known to have occurred in the distant Universe (z > 5) is small (∼15); however, these events provide a powerful way of probing star formation at the onset of galaxy evolution. In this paper, we present the case for GRB 100205A being a largely overlooked high-redshift event. While initially noted as a high-z candidate, this event and its host galaxy have not been explored in detail. By combining optical and near-infrared Gemini afterglow imaging (at t < 1.3 d since burst) with deep late-time limits on host emission from the Hubble Space Telescope, we show that the most likely scenario is that GRB 100205A arose in the range 4 < z < 8. GRB 100205A is an example of a burst whose afterglow, even at ∼1 h post burst, could only be identified by 8-m class IR observations, and suggests that such observations of all optically dark bursts may be necessary to significantly enhance the number of high-redshift GRBs known.


2015 ◽  
Vol 2015 ◽  
pp. 1-37 ◽  
Author(s):  
Asaf Pe’er

In recent years, our understanding of gamma-ray bursts (GRB) prompt emission has been revolutionized, due to a combination of new instruments, new analysis methods, and novel ideas. In this review, I describe the most recent observational results and current theoretical interpretation. Observationally, a major development is the rise of time resolved spectral analysis. These led to (I) identification of a distinguished high energy component, with GeV photons often seen at a delay and (II) firm evidence for the existence of a photospheric (thermal) component in a large number of bursts. These results triggered many theoretical efforts aimed at understanding the physical conditions in the inner jet regions. I highlight some areas of active theoretical research. These include (I) understanding the role played by magnetic fields in shaping the dynamics of GRB outflow and spectra; (II) understanding the microphysics of kinetic and magnetic energy transfer, namely, accelerating particle to high energies in both shock waves and magnetic reconnection layers; (III) understanding how subphotospheric energy dissipation broadens the “Planck” spectrum; and (IV) geometrical light aberration effects. I highlight some of these efforts and point towards gaps that still exist in our knowledge as well as promising directions for the future.


2022 ◽  
Vol 924 (1) ◽  
pp. 16
Author(s):  
K. P. Mooley ◽  
B. Margalit ◽  
C. J. Law ◽  
D. A. Perley ◽  
A. T. Deller ◽  
...  

Abstract We present new radio and optical data, including very-long-baseline interferometry, as well as archival data analysis, for the luminous, decades-long radio transient FIRST J141918.9+394036. The radio data reveal a synchrotron self-absorption peak around 0.3 GHz and a radius of around 1.3 mas (0.5 pc) 26 yr post-discovery, indicating a blastwave energy ∼5 × 1050 erg. The optical spectrum shows a broad [O iii]λ4959,5007 emission line that may indicate collisional excitation in the host galaxy, but its association with the transient cannot be ruled out. The properties of the host galaxy are suggestive of a massive stellar progenitor that formed at low metallicity. Based on the radio light curve, blastwave velocity, energetics, nature of the host galaxy and transient rates, we find that the properties of J1419+3940 are most consistent with long gamma-ray burst (LGRB) afterglows. Other classes of (optically discovered) stellar explosions as well as neutron star mergers are disfavored, and invoking any exotic scenario may not be necessary. It is therefore likely that J1419+3940 is an off-axis LGRB afterglow (as suggested by Law et al. and Marcote et al.), and under this premise the inverse beaming fraction is found to be f b − 1 ≃ 280 − 200 + 700 , corresponding to an average jet half-opening angle < θ j > ≃ 5 − 2 + 4 degrees (68% confidence), consistent with previous estimates. From the volumetric rate we predict that surveys with the Very Large Array, Australian Square Kilometre Array Pathfinder, and MeerKAT will find a handful of J1419+3940-like events over the coming years.


2020 ◽  
Vol 633 ◽  
pp. A68 ◽  
Author(s):  
A. de Ugarte Postigo ◽  
C. C. Thöne ◽  
S. Martín ◽  
J. Japelj ◽  
A. J. Levan ◽  
...  

Context. For the first time, very high energy emission up to the TeV range has been reported for a gamma-ray burst (GRB). It is still unclear whether the environmental properties of GRB 190114C might have contributed to the production of these very high energy photons, or if it is solely related to the released GRB emission. Aims. The relatively low redshift of the GRB (z = 0.425) allows us to study the host galaxy of this event in detail, and to potentially identify idiosyncrasies that could point to progenitor characteristics or environmental properties that might be responsible for this unique event. Methods. We used ultraviolet, optical, infrared, and submillimetre imaging and spectroscopy obtained with the HST, the VLT, and ALMA to obtain an extensive dataset on which the analysis of the host galaxy is based. Results. The host system is composed of a close pair of interacting galaxies (Δv = 50 km s−1), both of which are well detected by ALMA in CO(3-2). The GRB occurred within the nuclear region (∼170 pc from the centre) of the less massive but more star-forming galaxy of the pair. The host is more massive (log(M/M⊙) = 9.3) than average GRB hosts at this redshift, and the location of the GRB is rather unique. The higher star formation rate was probably triggered by tidal interactions between the two galaxies. Our ALMA observations indicate that both host galaxy and companion have a high molecular gas fraction, as has been observed before in interacting galaxy pairs. Conclusions. The location of the GRB within the core of an interacting galaxy with an extinguished line of sight is indicative of a denser environment than typically observed for GRBs and could have been crucial for the generation of the very high energy photons that were observed.


2018 ◽  
Vol 619 ◽  
pp. A66 ◽  
Author(s):  
V. D’Elia ◽  
S. Campana ◽  
A. D’Aì ◽  
M. De Pasquale ◽  
S. W. K. Emery ◽  
...  

Context. Gamma-ray bursts (GRBs) occurring in the local Universe constitute an interesting sub-class of the GRB family, since their luminosity is on average lower than that of their cosmological analogs. Attempts to understand in a global way this peculiar behaviour is still not possible, since the sample of low redshift GRBs is small, and the properties of individual objects are too different from each other. In addition, their closeness (and consequently high fluxes) make these sources ideal targets for extensive follow-up even with small telescopes, considering also that these GRBs are conclusively associated with supernova (SN) explosions. Aims. We aim to contribute to the study of local bursts by reporting the case of GRB 171205A. This source was discovered by Swift Burst Alert Telescope (BAT) on 2017, December 5 and soon associated with a low redshift host galaxy (z = 0.037), and an emerging SN (SN 2017iuk). Methods. We analyzed the full Swift dataset, comprising the UV-Optical Telescope (UVOT), X-ray Telescope (XRT) and BAT data. In addition, we employed the Konus-Wind high energy data as a valuable extension at γ-ray energies. Results. The photometric SN signature is clearly visible in the UVOT u, b and ν filters. The maximum emission is reached at ∼13 (rest frame) days, and the whole bump resembles that of SN 2006aj, but lower in magnitude and with a shift in time of +2 d. A prebump in the ν-band is also clearly visible, and this is the first time that such a feature is not observed achromatically in GRB–SNe. Its physical origin cannot be easily explained. The X-ray spectrum shows an intrinsic Hydrogen column density NH,int = 7.4+4.1−3.6 × 1020 cm−2, which is at the low end of the N H, int, even considering just low redshift GRBs. The spectrum also features a thermal component, which is quite common in GRBs associated with SNe, but whose origin is still a matter of debate. Finally, the isotropic energy in the γ-ray band, Eiso = 2.18+0.63−5.0 × 1049 erg, is lower than those of cosmological GRBs. Combining this value with the peak energy in the same band, Ep = 125+141−37 keV, implies that GRB 171205A is an outlier of the Amati relation, as are some other low redshift GRBs, and its emission mechanism should be different from that of canonical, farther away GRBs.


2017 ◽  
Vol 606 ◽  
pp. A93 ◽  
Author(s):  
M. Yassine ◽  
F. Piron ◽  
R. Mochkovitch ◽  
F. Daigne

Aims. The prompt light curve of the long GRB 090926A reveals a short pulse ~10 s after the beginning of the burst emission, which has been observed by the Fermi observatory from the keV to the GeV energy domain. During this bright spike, the high-energy emission from GRB 090926A underwent a sudden hardening above 10 MeV in the form of an additional power-law component exhibiting a spectral attenuation at a few hundreds of MeV. This high-energy break has been previously interpreted in terms of gamma-ray opacity to pair creation and has been used to estimate the bulk Lorentz factor of the outflow. In this article, we report on a new time-resolved analysis of the GRB 090926A broadband spectrum during its prompt phase and on its interpretation in the framework of prompt emission models. Methods. We characterized the emission from GRB 090926A at the highest energies with Pass 8 data from the Fermi Large Area Telescope (LAT), which offer a greater sensitivity than any data set used in previous studies of this burst, particularly in the 30−100 MeV energy band. Then, we combined the LAT data with the Fermi Gamma-ray Burst Monitor (GBM) in joint spectral fits to characterize the time evolution of the broadband spectrum from keV to GeV energies. We paid careful attention to the systematic effects that arise from the uncertainties on the LAT response. Finally, we performed a temporal analysis of the light curves and we computed the variability timescales from keV to GeV energies during and after the bright spike. Results. Our analysis confirms and better constrains the spectral break, which has been previously reported during the bright spike. Furthermore, it reveals that the spectral attenuation persists at later times with an increase of the break characteristic energy up to the GeV domain until the end of the prompt phase. We discuss these results in terms of keV−MeV synchroton radiation of electrons accelerated during the dissipation of the jet energy and inverse Compton emission at higher energies. We interpret the high-energy spectral break as caused by photon opacity to pair creation. Requiring that all emissions are produced above the photosphere of GRB 090926A, we compute the bulk Lorentz factor of the outflow, Γ. The latter decreases from 230 during the spike to 100 at the end of the prompt emission. Assuming, instead, that the spectral break reflects the natural curvature of the inverse Compton spectrum, lower limits corresponding to larger values of Γ are also derived. Combined with the extreme temporal variability of GRB 090926A, these Lorentz factors lead to emission radii R ~ 1014 cm, which are consistent with an internal origin of both the keV−MeV and GeV prompt emissions.


2012 ◽  
Vol 08 ◽  
pp. 231-234
Author(s):  
JIRONG MAO

The jitter radiation, which is the emission of relativistic electrons in the random and small-scale magnetic field, is utilized to investigate the high-energy emission of gamma-ray bursts. We produce the random and small-scale magnetic field using turbulent scenario. The electrons can be accelerated by stochastic acceleration. We also estimate the acceleration and cooling timescales, aiming to identify the validation of jitter regime under the GRB fireball framework. The possible maximum energy of electrons in our case is estimated as well.


Sign in / Sign up

Export Citation Format

Share Document