scholarly journals Tolerance to Selenoprotein Loss Differs between Human and Mouse

2019 ◽  
Vol 37 (2) ◽  
pp. 341-354 ◽  
Author(s):  
Didac Santesmasses ◽  
Marco Mariotti ◽  
Vadim N Gladyshev

Abstract Mouse has emerged as the most common model organism in biomedicine. Here, we analyzed the tolerance to the loss-of-function (LoF) of selenoprotein genes, estimated from mouse knockouts and the frequency of LoF variants in humans. We found not only a general correspondence in tolerance (e.g., GPX1, GPX2) and intolerance (TXNRD1, SELENOT) to gene LoF between humans and mice but also important differences. Notably, humans are intolerant to the loss of iodothyronine deiodinases, whereas their deletion in mice leads to mild phenotypes, and this is consistent with phenotype differences in selenocysteine machinery loss between these species. In contrast, loss of TXNRD2 and GPX4 is lethal in mice but may be tolerated in humans. We further identified the first human SELENOP variants coding for proteins varying in selenocysteine content. Finally, our analyses suggested that premature termination codons in selenoprotein genes trigger nonsense-mediated decay, but do this inefficiently when UGA codon is gained. Overall, our study highlights differences in the physiological importance of selenoproteins between human and mouse.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jae Yong Yoo ◽  
Ki Seong Ko ◽  
Bich Ngoc Vu ◽  
Young Eun Lee ◽  
Seok Han Yoon ◽  
...  

Alpha-1,6-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase [EC 2.4.1.143, N-acetylglucosaminyltransferase II (GnTII)] catalyzes the transfer of N-acetylglucosamine (GlcNAc) residue from the nucleotide sugar donor UDP-GlcNAc to the α1,6-mannose residue of the di-antennary N-glycan acceptor GlcNAc(Xyl)Man3(Fuc)GlcNAc2 in the Golgi apparatus. Although the formation of the GlcNAc2(Xyl)Man3(Fuc)GlcNAc2 N-glycan is known to be associated with GnTII activity in Arabidopsis thaliana, its physiological significance is still not fully understood in plants. To address the physiological importance of the GlcNAc2(Xyl)Man3(Fuc)GlcNAc2 N-glycan, we examined the phenotypic effects of loss-of-function mutations in GnTII in the presence and absence of stress, and responsiveness to phytohormones. Prolonged stress induced by tunicamycin (TM) or sodium chloride (NaCl) treatment increased GnTII expression in wild-type Arabidopsis (ecotype Col-0) but caused severe developmental damage in GnTII loss-of-function mutants (gnt2-1 and gnt2-2). The absence of the 6-arm GlcNAc residue in the N-glycans in gnt2-1 facilitated the TM-induced unfolded protein response, accelerated dark-induced leaf senescence, and reduced cytokinin signaling, as well as susceptibility to cytokinin-induced root growth inhibition. Furthermore, gnt2-1 and gnt2-2 seedlings exhibited enhanced N-1-naphthylphthalamic acid-induced inhibition of tropic growth and development. Thus, GnTII’s promotion of the 6-arm GlcNAc addition to N-glycans is important for plant growth and development under stress conditions, possibly via affecting glycoprotein folding and/or distribution.


2018 ◽  
Author(s):  
Paul C. Marcogliese ◽  
Vandana Shashi ◽  
Rebecca C. Spillmann ◽  
Nicholas Stong ◽  
Jill A. Rosenfeld ◽  
...  

AbstractThe Interferon Regulatory Factor 2 Binding Protein Like (IRF2BPL) gene encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals affected with neurological symptoms who carry damaging heterozygous variants in IRF2BPL. Five cases carrying nonsense variants in IRF2BPL resulting in a premature stop codon display severe neurodevelopmental regression, hypotonia, progressive ataxia, seizures, and a lack of coordination. Two additional individuals, both with missense variants, display global developmental delay and seizures and a relatively milder phenotype than those with nonsense alleles. The bioinformatics signature for IRF2BPL based on population genomics is consistent with a gene that is intolerant to variation. We show that the IRF2BPL ortholog in the fruit fly, called pits (protein interacting with Ttk69 and Sin3A), is broadly expressed including the nervous system. Complete loss of pits is lethal early in development, whereas partial knock-down with RNA interference in neurons leads to neurodegeneration, revealing requirement for this gene in proper neuronal function and maintenance. The nonsense variants in IRF2BPL identified in patients behave as severe loss-of-function alleles in this model organism, while ectopic expression of the missense variants leads to a range of phenotypes. Taken together, IRF2BPL and pits are required in the nervous system in humans and flies, and their loss leads to a range of neurological phenotypes in both species.


2004 ◽  
Vol 287 (3) ◽  
pp. C580-C589 ◽  
Author(s):  
Van-Khue Ton ◽  
Rajini Rao

The baker's yeast Saccharomyces cerevisiae is a well-developed, versatile, and widely used model organism. It offers a compact and fully sequenced genome, tractable genetics, simple and inexpensive culturing conditions, and, importantly, a conservation of basic cellular machinery and signal transducing pathways with higher eukaryotes. In this review, we describe recent technical advances in the heterologous expression of proteins in yeast and illustrate their application to the study of the Ca2+ homeostasis machinery, with particular emphasis on Ca2+-transporting ATPases. Putative Ca2+-ATPases in the newly sequenced genomes of organisms such as parasites, plants, and vertebrates have been investigated by functional complementation of an engineered yeast strain lacking endogenous Ca2+ pumps. High-throughput screens of mutant phenotypes to identify side chains critical for ion transport and selectivity have facilitated structure-function analysis, and genomewide approaches may be used to dissect cellular pathways involved in Ca2+ transport and trafficking. The utility of the yeast system is demonstrated by rapid advances in the study of the emerging family of Golgi/secretory pathway Ca2+,Mn2+-ATPases (SPCA). Functional expression of human SPCA1 in yeast has provided insight into the physiology, novel biochemical characteristics, and subcellular localization of this pump. Haploinsufficiency of SPCA1 leads to Hailey-Hailey disease (HDD), a debilitating blistering disorder of the skin. Missense mutations, identified in patients with HHD, may be conveniently assessed in yeast for loss-of-function phenotypes associated with the disease.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3194
Author(s):  
Begoña Ayuda-Durán ◽  
Susana González-Manzano ◽  
Ana M. González-Paramás ◽  
Celestino Santos-Buelga

The nematode Caenorhabditis elegans was introduced as a model organism in biological research by Sydney Brenner in the 1970s. Since then, it has been increasingly used for investigating processes such as ageing, oxidative stress, neurodegeneration, or inflammation, for which there is a high degree of homology between C. elegans and human pathways, so that the worm offers promising possibilities to study mechanisms of action and effects of phytochemicals of foods and plants. In this paper, the genes and pathways regulating oxidative stress in C. elegans are discussed, as well as the methodological approaches used for their evaluation in the worm. In particular, the following aspects are reviewed: the use of stress assays, determination of chemical and biochemical markers (e.g., ROS, carbonylated proteins, lipid peroxides or altered DNA), influence on gene expression and the employment of mutant worm strains, either carrying loss-of-function mutations or fluorescent reporters, such as the GFP.


2016 ◽  
Vol 310 (3) ◽  
pp. C233-C242 ◽  
Author(s):  
Erik Allman ◽  
Qian Wang ◽  
Rachel L. Walker ◽  
Molly Austen ◽  
Maureen A. Peters ◽  
...  

Calcineurin B homologous proteins (CHP) are N-myristoylated, EF-hand Ca2+-binding proteins that bind to and regulate Na+/H+ exchangers, which occurs through a variety of mechanisms whose relative significance is incompletely understood. Like mammals, Caenorhabditis elegans has three CHP paralogs, but unlike mammals, worms can survive CHP loss-of-function. However, mutants for the CHP ortholog PBO-1 are unfit, and PBO-1 has been shown to be required for proton signaling by the basolateral Na+/H+ exchanger NHX-7 and for proton-coupled intestinal nutrient uptake by the apical Na+/H+ exchanger NHX-2. Here, we have used this genetic model organism to interrogate PBO-1's mechanism of action. Using fluorescent tags to monitor Na+/H+ exchanger trafficking and localization, we found that loss of either PBO-1 binding or activity caused NHX-7 to accumulate in late endosomes/lysosomes. In contrast, NHX-2 was stabilized at the apical membrane by a nonfunctional PBO-1 protein and was only internalized following its complete loss. Additionally, two pbo-1 paralogs were identified, and their expression patterns were analyzed. One of these contributed to the function of the excretory cell, which acts like a kidney in worms, establishing an alternative model for testing the role of this protein in membrane transporter trafficking and regulation. These results lead us to conclude that the role of CHP in Na+/H+ exchanger regulation differs between apical and basolateral transporters. This further emphasizes the importance of proper targeting of Na+/H+ exchangers and the critical role of CHP family proteins in this process.


Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 2081-2088 ◽  
Author(s):  
Belinda K. Singleton ◽  
Nicholas M. Burton ◽  
Carole Green ◽  
R. Leo Brady ◽  
David J. Anstee

Abstract Comparison of normal erythroblasts and erythroblasts from persons with the rare In(Lu) type of Lu(a-b-) blood group phenotype showed increased transcription levels for 314 genes and reduced levels for 354 genes in In(Lu) cells. Many erythroid-specific genes (including ALAS2, SLC4A1) had reduced transcript levels, suggesting the phenotype resulted from a transcription factor abnormality. A search for mutations in erythroid transcription factors showed mutations in the promoter or coding sequence of EKLF in 21 of 24 persons with the In(Lu) phenotype. In all cases the mutant EKLF allele occurred in the presence of a normal EKLF allele. Nine different loss-of-function mutations were identified. One mutation abolished a GATA1 binding site in the EKLF promoter (−124T>C). Two mutations (Leu127X; Lys292X) resulted in premature termination codons, 2 (Pro190LeufsX47; Arg319GlufsX34) in frameshifts, and 4 in amino acid substitution of conserved residues in zinc finger domain 1 (His299Tyr) or domain 2 (Arg328Leu; Arg328His; Arg331Gly). Persons with the In(Lu) phenotype have no reported pathology, indicating that one functional EKLF allele is sufficient to sustain human erythropoiesis. These data provide the first description of inactivating mutations in human EKLF and the first demonstration of a blood group phenotype resulting from mutations in a transcription factor.


2009 ◽  
Vol 20 (12) ◽  
pp. 2979-2990 ◽  
Author(s):  
Hiromi Kawai ◽  
Takahiro Tanji ◽  
Hirohisa Shiraishi ◽  
Mitsuo Yamada ◽  
Ryoko Iijima ◽  
...  

TAP-like (TAPL; ABCB9) is a half-type ATP-binding cassette (ABC) transporter that localizes in lysosome and putatively conveys peptides from cytosol to lysosome. However, the physiological role of this transporter remains to be elucidated. Comparison of genome databases reveals that TAPL is conserved in various species from a simple model organism, Caenorhabditis elegans, to mammals. C. elegans possesses homologous TAPL genes: haf-4 and haf-9. In this study, we examined the tissue-specific expression of these two genes and analyzed the phenotypes of the loss-of-function mutants for haf-4 and haf-9 to elucidate the in vivo function of these genes. Both HAF-4 and HAF-9 tagged with green fluorescent protein (GFP) were mainly localized on the membrane of nonacidic but lysosome-associated membrane protein homologue (LMP-1)-positive intestinal granules from larval to adult stage. The mutants for haf-4 and haf-9 exhibited granular defects in late larval and young adult intestinal cells, associated with decreased brood size, prolonged defecation cycle, and slow growth. The intestinal granular phenotype was rescued by the overexpression of the GFP-tagged wild-type protein, but not by the ATP-unbound form of HAF-4. These results demonstrate that two ABC transporters, HAF-4 and HAF-9, are related to intestinal granular formation and some other physiological aspects.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Christian Büchter ◽  
Liang Zhao ◽  
Susannah Havermann ◽  
Sebastian Honnen ◽  
Gerhard Fritz ◽  
...  

2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) was isolated fromPolygonum multiflorum, a plant which is traditionally used as an anti-ageing drug. We have analysed ageing-related effects of TSG in the model organismC. elegansin comparison to resveratrol. TSG exerted a high antioxidative capacity both in a cell-free assay and in the nematode. The antioxidative capacity was even higher compared to resveratrol. Presumably due to its antioxidative effects, treatment with TSG decreased the juglone-mediated induction of the antioxidative enzyme SOD-3; the induction of the GST-4 by juglone was diminished slightly. TSG increased the resistance ofC. elegansagainst lethal thermal stress more prominently than resveratrol (50 μM TSG increased mean survival by 22.2%). The level of the ageing pigment lipofuscin was decreased after incubation with the compound. TSG prolongs the mean, median, and maximum adult life span ofC. elegansby 23.5%, 29.4%, and 7.2%, respectively, comparable to the effects of resveratrol. TSG-mediated extension of life span was not abolished in a DAF-16 loss-of-function mutant strain showing that this ageing-related transcription factor is not involved in the effects of TSG. Our data show that TSG possesses a potent antioxidative capacity, enhances the stress resistance, and increases the life span of the nematodeC. elegans.


2006 ◽  
Vol 26 (24) ◽  
pp. 9177-9184 ◽  
Author(s):  
Zoia Stoytcheva ◽  
Rosa M. Tujebajeva ◽  
John W. Harney ◽  
Marla J. Berry

ABSTRACT Selenocysteine is incorporated into proteins via “recoding” of UGA from a stop codon to a sense codon, a process that requires specific secondary structures in the 3′ untranslated region, termed selenocysteine incorporation sequence (SECIS) elements, and the protein factors that they recruit. Whereas most selenoprotein mRNAs contain a single UGA codon and a single SECIS element, selenoprotein P genes encode multiple UGAs and two SECIS elements. We have identified evolutionary adaptations in selenoprotein P genes that contribute to the efficiency of incorporating multiple selenocysteine residues in this protein. The first is a conserved, inefficiently decoded UGA codon in the N-terminal region, which appears to serve both as a checkpoint for the presence of factors required for selenocysteine incorporation and as a“ bottleneck,” slowing down the progress of elongating ribosomes. The second adaptation involves the presence of introns downstream of this inefficiently decoded UGA which confer the potential for nonsense-mediated decay when factors required for selenocysteine incorporation are limiting. Third, the two SECIS elements in selenoprotein P mRNA function with differing efficiencies, affecting both the rate and the efficiency of decoding different UGAs. The implications for how these factors contribute to the decoding of multiple selenocysteine residues are discussed.


2017 ◽  
Author(s):  
Joshua A. Meier ◽  
Feng Zhang ◽  
Neville E. Sanjana

GUIDES (Graphical User Interface for DNA Editing Screens) is a web-based tool for the design of custom, large-scale CRISPR libraries for loss-of-function screens in human and mouse. GUIDES combines multi-tissue RNA-sequencing data to target expressed exons, protein annotation to target functional domains, sophisticated on-target and off-target guide RNA scoring and other optimizations to create CRISPR libraries directly from a list of genes without requiring any programming expertise.


Sign in / Sign up

Export Citation Format

Share Document