scholarly journals Glucose-inducible expression of rrg1+ in Schizosaccharomyces pombe: post-transcriptional regulation of mRNA stability mediated by the downstream region of the poly(A) site

2002 ◽  
Vol 30 (5) ◽  
pp. 1145-1153 ◽  
Author(s):  
M. J. Kim
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingpeng Yao ◽  
Ying Yang ◽  
Wenhui Guo ◽  
Lifan Xu ◽  
Menghao You ◽  
...  

AbstractT follicular helper (TFH) cells are specialized effector CD4+ T cells critical to humoral immunity. Whether post-transcriptional regulation has a function in TFH cells is unknown. Here, we show conditional deletion of METTL3 (a methyltransferase catalyzing mRNA N6-methyladenosine (m6A) modification) in CD4+ T cells impairs TFH differentiation and germinal center responses in a cell-intrinsic manner in mice. METTL3 is necessary for expression of important TFH signature genes, including Tcf7, Bcl6, Icos and Cxcr5 and these effects depend on intact methyltransferase activity. m6A-miCLIP-seq shows the 3′ UTR of Tcf7 mRNA is subjected to METTL3-dependent m6A modification. Loss of METTL3 or mutation of the Tcf7 3′ UTR m6A site results in accelerated decay of Tcf7 transcripts. Importantly, ectopic expression of TCF-1 (encoded by Tcf7) rectifies TFH defects owing to METTL3 deficiency. Our findings indicate that METTL3 stabilizes Tcf7 transcripts via m6A modification to ensure activation of a TFH transcriptional program, indicating a pivotal function of post-transcriptional regulation in promoting TFH cell differentiation.


1998 ◽  
Vol 80 (4) ◽  
pp. 307-321
Author(s):  
John E. Hesketh ◽  
M. Helena Vasconcelos ◽  
Giovanna Bermano

Nutrition has marked influences on gene expression and an understanding of the interaction between nutrients and gene expression is important in order to provide a basis for determining the nutritional requirements on an individual basis. The effects of nutrition can be exerted at many stages between transcription of the genetic sequence and production of a functional protein. This review focuses on the role of post-transcriptional control, particularly mRNA stability, translation and localization, in the interactions of nutrients with gene expression. The effects of both macronutrients and micronutrients on regulation of gene expression by post-transcriptional mechanisms are presented and the post-transcriptional regulation of specific genes of nutritional relevance (glucose transporters, transferrin, selenoenzymes, metallothionein, lipoproteins) is described in detail. The function of the regulatory signals in the untranslated regions of the mRNA is highlighted in relation to control of mRNA stability, translation and localization and the importance of these mRNA regions to regulation by nutrients is illustrated by reference to specific examples. The localization of mRNA by signals in the untranslated regions and its function in the spatial organization of protein synthesis is described; the potential of such mechanisms to play a key part in nutrient channelling and metabolic compartmentation is discussed. It is concluded that nutrients can influence gene expression through control of the regulatory signals in these untranslated regions and that the post-transcriptional regulation of gene expression by these mechanisms may influence nutritional requirements. It is emphasized that in studies of nutritional control of gene expression it is important not to focus only on regulation through gene promoters but also to consider the possibility of post-transcriptional control.


2017 ◽  
Vol 474 (10) ◽  
pp. 1669-1687
Author(s):  
Hiromi Motohashi ◽  
Yoshiki Mukudai ◽  
Chihiro Ito ◽  
Kosuke Kato ◽  
Toshikazu Shimane ◽  
...  

Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3′-untranslated region (3′-UTR) of TPD52 as a cis-acting element in post-transcriptional gene regulation. Several deletion mutants of the 3′-UTR of TPD52 mRNA were constructed and ligated to the 3′-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis-acting region, located in the 78-280 region of the 5′-proximal region of the 3′-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3′-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis-acting element and trans-acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene.


2021 ◽  
Author(s):  
Roberta Rapone ◽  
Laurence Del Maestro ◽  
Costas Bouyioukos ◽  
Sonia Albini ◽  
Paola Cruz-Tapias ◽  
...  

Abstract Embryonic stem cells (ESCs) fate is regulated both at transcriptional and post-transcriptional levels. Indeed, several studies showed that, in addition to gene transcription, mRNA stability and protein synthesis are finely tuned and strongly control the ESCs pluripotency and fate changes. An increasing number of RNA-binding proteins (RBPs) involved in post-transcriptional and translational regulation of gene expression has been identified as regulators of ESC identity. The major lysine methyltransferase Setdb1 is essential for the self-renewal and viability of ESCs. Setdb1 was primarily known to methylate the lysine 9 of histone 3 (H3K9) in the nucleus, where it regulates chromatin functions. However, Setdb1 is also massively localized in the cytoplasm, including in mouse ESCs, where its role remains unknown. Here we show that the cytoplasmic Setdb1 (cSetdb1) is essential for the survival of mESCs. Functional assays further demonstrate that cSetdb1 regulates gene expression post-transcriptionally, affecting the abundance of mRNAs and the rate of newly synthetized proteins. A yeast-two-hybrid assay shows that cSetdb1 interacts with several regulators of mRNA stability and protein translation machinery, such as the ESCs-specific E3 ubiquitin ligase and mRNA silencer Trim71/Lin41. Finally, proteomic analyses reveal that cSetdb1 is required for the integrity of Trim71 complexes involved in mRNA metabolism and translation. Altogether, our data uncover the essential cytoplasmic function of a firstly supposed nuclear “histone” lysine methyltransferase, Setdb1, and provide new insights into the cytoplasmic/post-transcriptional regulation of gene expression mediated by a key epigenetic regulator.


2018 ◽  
Author(s):  
Charles E. Vejnar ◽  
Mario Abdel Messih ◽  
Carter M. Takacs ◽  
Valeria Yartseva ◽  
Panos Oikonomou ◽  
...  

AbstractPost-transcriptional regulation is crucial to shape gene expression. During the Maternal-to-Zygotic Transition (MZT), thousands of maternal transcripts are regulated upon fertilization and genome activation. Transcript stability can be influenced by cis-elements and trans-factors, but how these inputs are integrated to determine the overall mRNA stability is unclear. Here, we show that most transcripts are under combinatorial regulation by multiple decay pathways during zebrafish MZT. To identify cis-regulatory elements, we performed a massively parallel reporter assay for stability-influencing sequences, which revealed that 3’-UTR poly-U motifs are associated with mRNA stability. In contrast, miR-430 target sequences, UAUUUAUU AU-rich elements (ARE), CCUC and CUGC elements emerged as the main destabilizing motifs in the embryo, with miR-430 and AREs causing mRNA deadenylation in a genome activation-dependent manner. To identify the trans-factors interacting with these cis-elements, we comprehensively profiled RNA-protein interactions and their associated regulatory activities across the transcriptome during the MZT. We find that poly-U binding proteins are preferentially associated with 3’-UTR sequences and stabilizing motifs, and that antagonistic sequence contexts for poly-C and poly-U binding proteins shape the binding landscape and magnitude of regulation across the transcriptome. Finally, we integrate these regulatory motifs into a machine learning model that accurately predicts the stability of mRNA reporters in vivo. Our findings reveal how mechanisms of post-transcriptional regulation are coordinated to direct changes in mRNA stability within the early zebrafish embryo.


Sign in / Sign up

Export Citation Format

Share Document