scholarly journals Polyadenylation and reverse transcription of influenza viral RNA

1979 ◽  
Vol 6 (11) ◽  
pp. 3715-3715
Author(s):  
J.S. Emtage ◽  
G.H. Catlin ◽  
N.H. Carey
2020 ◽  
Vol 22 (1) ◽  
pp. 58
Author(s):  
Thomas Gremminger ◽  
Zhenwei Song ◽  
Juan Ji ◽  
Avery Foster ◽  
Kexin Weng ◽  
...  

The reverse transcription of the human immunodeficiency virus 1 (HIV-1) initiates upon annealing of the 3′-18-nt of tRNALys3 onto the primer binding site (PBS) in viral RNA (vRNA). Additional intermolecular interactions between tRNALys3 and vRNA have been reported, but their functions remain unclear. Here, we show that abolishing one potential interaction, the A-rich loop: tRNALys3 anticodon interaction in the HIV-1 MAL strain, led to a decrease in viral infectivity and reduced the synthesis of reverse transcription products in newly infected cells. In vitro biophysical and functional experiments revealed that disruption of the extended interaction resulted in an increased affinity for reverse transcriptase (RT) and enhanced primer extension efficiency. In the absence of deoxyribose nucleoside triphosphates (dNTPs), vRNA was degraded by the RNaseH activity of RT, and the degradation rate was slower in the complex with the extended interaction. Consistently, the loss of vRNA integrity was detected in virions containing A-rich loop mutations. Similar results were observed in the HIV-1 NL4.3 strain, and we show that the nucleocapsid (NC) protein is necessary to promote the extended vRNA: tRNALys3 interactions in vitro. In summary, our data revealed that the additional intermolecular interaction between tRNALys3 and vRNA is likely a conserved mechanism among various HIV-1 strains and protects the vRNA from RNaseH degradation in mature virions.


PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e23622 ◽  
Author(s):  
Paula Maria Kinnunen ◽  
Hanna Inkeroinen ◽  
Mette Ilander ◽  
Eva Riikka Kallio ◽  
Henna Pauliina Heikkilä ◽  
...  

2019 ◽  
Author(s):  
◽  
Samantha Elizabeth Brady

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Understanding viral RNA structure and how it functions is crucial in elucidating new drug targets. There are many kinds of viruses that utilize RNA as a critical component of their life cycle, such as retroviruses, single-stranded plus or minus sense RNA viruses, and double-stranded RNA viruses. Two viruses that are studied in this thesis are human immunodeficiency virus (HIV), which is a retrovirus, and hepatitis C virus (HCV), which is a single-stranded plus sense RNA virus. It has been previously reported that a human host factor, RNA helicase A (RHA), is packaged into HIV virions by binding to the primer binding site (PBS) segment of the 5'untranslated region in the HIV genomic RNA. We determined RHA is required for efficient reverse transcription prior to capsid uncoating by utilizing cell based and in vitro techniques. It has also been suggested that RHA plays other roles during HIV infection besides reverse transcription. Utilizing NMR, we demonstrated that RHA binds to the monomeric 5'UTR at the bottom of the TAR hairpin, which is different from how it binds during viral packaging. Next, we employed NMR techniques to probe the 3'end of the HCV genome called 3'X. We determined that the 3'X is in structural equilibrium between two states: an open conformation and a closed conformation. These two conformations have been suggested to play a role in minus sense synthesis and viral protein translation, respectively. Taken together, my thesis work has elucidated how many viruses manipulate and utilize their RNA structure to modulate their outcome.


2020 ◽  
Vol 117 (39) ◽  
pp. 24450-24458 ◽  
Author(s):  
Brian A. Rabe ◽  
Constance Cepko

The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has had an enormous impact on society worldwide, threatening the lives and livelihoods of many. The effects will continue to grow and worsen if economies begin to open without the proper precautions, including expanded diagnostic capabilities. To address this need for increased testing, we have developed a sensitive reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay compatible with current reagents, which utilizes a colorimetric readout in as little as 30 min. A rapid inactivation protocol capable of inactivating virions, as well as endogenous nucleases, was optimized to increase sensitivity and sample stability. This protocol, combined with the RT-LAMP assay, has a sensitivity of at least 50 viral RNA copies per microliter in a sample. To further increase the sensitivity, a purification protocol compatible with this inactivation method was developed. The inactivation and purification protocol, combined with the RT-LAMP assay, brings the sensitivity to at least 1 viral RNA copy per microliter in a sample. This simple inactivation and purification pipeline is inexpensive and compatible with other downstream RNA detection platforms and uses readily available reagents. It should increase the availability of SARS-CoV-2 testing as well as expand the settings in which this testing can be performed.


Author(s):  
Arghadip Samaddar ◽  
Ravisekhar Gadepalli ◽  
Vijaya Lakshmi Nag ◽  
Sanjeev Misra ◽  
Pankaj Bhardwaj ◽  
...  

Abstract We studied the pattern and duration of viral RNA shedding in 32 asymptomatic and 11 pauci-symptomatic coronavirus disease 2019 (COVID-19) cases. Viral RNA shedding in exhaled breath progressively diminished and became negative after six days of a positive reverse transcription polymerase chain reaction (RT-PCR) test. Therefore, the duration of isolation can be minimised to six days.


2007 ◽  
Vol 19 (5) ◽  
pp. 459-464
Author(s):  
H. Jane Oakey

Degradation of RNA in diagnostic specimens can cause false-negative test results and potential misdiagnosis when tests rely on the detection of specific RNA sequence. Current molecular methods of checking RNA integrity tend to be host species or group specific, necessitating libraries of primers and reaction conditions. The objective here was to develop a universal (multi-species) quality assurance tool for determining the integrity of RNA in animal tissues submitted to a laboratory for analyses. Ribosomal RNA (16S rRNA) transcribed from the mitochondrial 16S rDNA was used as template material for reverse transcription to cDNA and was amplified using polymerase chain reaction (PCR). As mitochondrial DNA has a high level of conservation, the primers used were shown to reverse transcribe and amplify RNA from every animal species tested. Deliberate degradation of rRNA template through temperature abuse of samples resulted in no reverse transcription and amplification. Samples spiked with viruses showed that single-stranded viral RNA and rRNA in the same sample degraded at similar rates, hence reverse transcription and PCR amplification of 16S rRNA could be used as a test of sample integrity and suitability for analysis that required the sample's RNA, including viral RNA. This test will be an invaluable quality assurance tool for determination of RNA integrity from tissue samples, thus avoiding erroneous test results that might occur if degraded target RNA is used unknowingly as template material for reverse transcription and subsequent PCR amplification.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 863 ◽  
Author(s):  
Steffen Klein ◽  
Thorsten G. Müller ◽  
Dina Khalid ◽  
Vera Sonntag-Buck ◽  
Anke-Mareil Heuser ◽  
...  

Rapid large-scale testing is essential for controlling the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The standard diagnostic pipeline for testing SARS-CoV-2 presence in patients with an ongoing infection is predominantly based on pharyngeal swabs, from which the viral RNA is extracted using commercial kits, followed by reverse transcription and quantitative PCR detection. As a result of the large demand for testing, commercial RNA extraction kits may be limited and, alternatively, non-commercial protocols are needed. Here, we provide a magnetic bead RNA extraction protocol that is predominantly based on in-house made reagents and is performed in 96-well plates supporting large-scale testing. Magnetic bead RNA extraction was benchmarked against the commercial QIAcube extraction platform. Comparable viral RNA detection sensitivity and specificity were obtained by fluorescent and colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) using a primer set targeting the N gene, as well as RT-qPCR using a primer set targeting the E gene, showing that the RNA extraction protocol presented here can be combined with a variety of detection methods at high throughput. Importantly, the presented diagnostic workflow can be quickly set up in a laboratory without access to an automated pipetting robot.


Plant Disease ◽  
1997 ◽  
Vol 81 (2) ◽  
pp. 222-226 ◽  
Author(s):  
Donald J. MacKenzie ◽  
Morven A. McLean ◽  
Srima Mukerji ◽  
Margaret Green

An efficient procedure for the extraction of high-quality RNA from woody plants without the use of phenol, organic solvents, or alcohol precipitation is described. The method employs commercially available spin-column matrices and mitigates the inhibitory effects of plant polysaccharides and polyphenolic compounds commonly observed on subsequent polymerase chain reaction amplification when conventional extraction methods are applied to woody plant species. The method described has been successfully used in the development of highly sensitive reverse transcription-polymerase chain reaction (RT-PCR) techniques for the detection of a number of viruses in their woody hosts. The viruses detected included apple stem grooving capillovirus (ASGV), apple stem pitting virus, Prunus necrotic ringspot ilarvirus (PNRSV), grapevine fanleaf and Arabis mosaic nepoviruses, and grapevine leafroll-associated closterovirus type 3. The method described was equally effective for the extraction of viral RNA from either budwood, leaves, or flower blossoms as determined by the equivalent RT-PCR detection of ASGV and PNRSV from these tissues. Detection of viral RNA in samples of total plant RNA prepared using this method was found to be as sensitive as was previously described for the immunocapture RT-PCR technique.


2019 ◽  
Vol 64 (9) ◽  
pp. 571-577
Author(s):  
V. A. Ternovoi ◽  
Yu. V. Kononova ◽  
A. V. Zaykovskaya ◽  
E. V. Chub ◽  
A. S. Volynkina ◽  
...  

This study presents the results of laboratory trials of the reagent kit for the rapid detection of RNA of the Crimean-Congo hemorrhagic fever virus (CCHFV) using loop-mediated isothermal amplification with reverse transcription (RT-LAMP). The developed RT-LAMP reagent kit was used to detect the CCHFV and showed a sensitivity of 103 GE/ml of viral RNA, which is sufficient for detection of the CCHFV in the early stage of human infections. The kit showed high specificity and no cross-reactivity with viral panel from the State collection of viruses of the FBRI SRC VB «Vector» (arboviruses and hemorrhagic fever viruses). Laboratory trials of the RT-LAMP kit are showed a high analytical and diagnostic sensitivity and specificity for RNA detection of the CCHFV and high speed of the analysis (60-70 min with sample preparation) compared to real-time PCR. Approbation of the kit field version has showed the possibility of setting the RT-LAMP reaction and viral RNA detection without the using of analytical equipments.


Sign in / Sign up

Export Citation Format

Share Document