scholarly journals Validation of human microRNA target pathways enables evaluation of target prediction tools

2020 ◽  
Author(s):  
Fabian Kern ◽  
Lena Krammes ◽  
Karin Danz ◽  
Caroline Diener ◽  
Tim Kehl ◽  
...  

Abstract MicroRNAs are regulators of gene expression. A wide-spread, yet not validated, assumption is that the targetome of miRNAs is non-randomly distributed across the transcriptome and that targets share functional pathways. We developed a computational and experimental strategy termed high-throughput miRNA interaction reporter assay (HiTmIR) to facilitate the validation of target pathways. First, targets and target pathways are predicted and prioritized by computational means to increase the specificity and positive predictive value. Second, the novel webtool miRTaH facilitates guided designs of reporter assay constructs at scale. Third, automated and standardized reporter assays are performed. We evaluated HiTmIR using miR-34a-5p, for which TNF- and TGFB-signaling, and Parkinson's Disease (PD)-related categories were identified and repeated the pipeline for miR-7-5p. HiTmIR validated 58.9% of the target genes for miR-34a-5p and 46.7% for miR-7-5p. We confirmed the targeting by measuring the endogenous protein levels of targets in a neuronal cell model. The standardized positive and negative targets are collected in the new miRATBase database, representing a resource for training, or benchmarking new target predictors. Applied to 88 target predictors with different confidence scores, TargetScan 7.2 and miRanda outperformed other tools. Our experiments demonstrate the efficiency of HiTmIR and provide evidence for an orchestrated miRNA-gene targeting.

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Toru Hosoda ◽  
Konrad Urbanek ◽  
Adriana Bastos Carvalho ◽  
Claudia Bearzi ◽  
Silvana Bardelli ◽  
...  

Myocardial regeneration mediated by cardiac progenitor cells (CPCs) results in the partial recovery of the infarcted heart but the newly formed myocytes within the necrotic tissue have fetal-neonatal characteristics. In contrast, CPC activation in the remote viable myocardium results in the formation of mature myocytes, suggesting that CPC differentiation is conditioned by the surrounding cells. Thus, the hypothesis is raised that microRNAs (miRs) that are highly expressed in myocytes and are absent in CPCs, may translocate through gap junctions to adjacent CPCs promoting their differentiation. By employing miR array and Q-RT-PCR, miR-499 was found to be ~500-fold more expressed in myocytes than CPCs. Additionally, we demonstrated that miR-499 translocates from neighboring cells to CPCs through the formation of gap junctions. The translocated miR-499 was functional and repressed the expression of target genes. Among 200 putative targets of miR-499, we have elected to study Sox6 and Rod1. The validation of these putative miR-499-targets was obtained by reporter assays; cells transfected with miR-499 together with plasmids carrying luciferase and the 3′-UTR region of Sox6 or Rod1 show the expected decrease in luciferase activity. Transcripts of Sox6 and Rod1 were measured by Q-RT-PCR in myocytes and CPCs; Sox6 mRNA was 2-fold higher and Rod1 mRNA was 98% lower in myocytes than CPCs. However, the protein levels of Sox6 and Rod1 were significantly lower in myocytes than CPCs suggesting that miR-499 promotes degradation and/or inhibition of translation of these target genes. To document miR-499 function, CPCs were transfected with a miR-499-expression vector and cell proliferation and differentiation were evaluated 3 days later. BrdU incorporation decreased 60% and the cells displayed a marked upregulation of the myocyte-specific transcription factors Nkx2.5 and MEF2C. Similar results were obtained when Sox6 and Rod1 were selectively blocked with siRNA. In both cases, the number of Nkx2.5- and MEF2C-positive cells increased 2–3-fold. Thus, our data indicate that miR-499 translocates via gap junction from myocytes to CPCs where miR-499 is a crucial modulator of the differentiation of CPCs into cardiomyocytes through the repression of Sox6 and Rod1.


2020 ◽  
Vol 21 (19) ◽  
pp. 7368
Author(s):  
Maryam Gholizadeh ◽  
Sylwia Szelag-Pieniek ◽  
Mariola Post ◽  
Mateusz Kurzawski ◽  
Jesus Prieto ◽  
...  

Liver diseases are important causes of morbidity and mortality worldwide. The aim of this study was to identify differentially expressed microRNAs (miRNAs), target genes, and key pathways as innovative diagnostic biomarkers in liver patients with different pathology and functional state. We determined, using RT-qPCR, the expression of 472 miRNAs in 125 explanted livers from subjects with six different liver pathologies and from control livers. ANOVA was employed to obtain differentially expressed miRNAs (DEMs), and miRDB (MicroRNA target prediction database) was used to predict target genes. A miRNA–gene differential regulatory (MGDR) network was constructed for each condition. Key miRNAs were detected using topological analysis. Enrichment analysis for DEMs was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). We identified important DEMs common and specific to the different patient groups and disease progression stages. hsa-miR-1275 was universally downregulated regardless the disease etiology and stage, while hsa-let-7a*, hsa-miR-195, hsa-miR-374, and hsa-miR-378 were deregulated. The most significantly enriched pathways of target genes controlled by these miRNAs comprise p53 tumor suppressor protein (TP53)-regulated metabolic genes, and those involved in regulation of methyl-CpG-binding protein 2 (MECP2) expression, phosphatase and tensin homolog (PTEN) messenger RNA (mRNA) translation and copper homeostasis. Our findings show a novel panel of deregulated miRNAs in the liver tissue from patients with different liver pathologies. These miRNAs hold potential as biomarkers for diagnosis and staging of liver diseases.


Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 700
Author(s):  
Bilal Ahmad Mir ◽  
Henry Reyer ◽  
Katrin Komolka ◽  
Siriluck Ponsuksili ◽  
Christa Kühn ◽  
...  

Intramuscular fat (IMF) is a meat quality indicator associated with taste and juiciness. IMF deposition, influenced by genetic and non-genetic factors, occurs through a transcriptionally coordinated process of adipogenesis. MicroRNAs (miRNAs) are transcriptional regulators of vital biological processes, including lipid metabolism and adipogenesis. However, in bovines, limited data on miRNA profiling and association with divergent intramuscular fat content, regulated exclusively by genetic parameters, have been reported. Here, a microarray experiment was performed to identify and characterize the miRNA expression pattern in the Musculus longissimus dorsi of F2-cross (Charolais × German Holstein) bulls with high and low IMF. A total of 38 differentially expressed miRNAs (DE miRNAs), including 33 upregulated and 5 downregulated (corrected p-value ≤ 0.05, FC ≥ ±1.2), were reported. Among DE miRNAs, the upregulated miRNAs miR-105a/b, miR-695, miR-1193, miR-1284, miR-1287-5p, miR-3128, miR-3178, miR-3910, miR-4443, miR-4445 and miR-4745, and the downregulated miRNAs miR-877-5p, miR-4487 and miR-4706 were identified as novel fat deposition regulators. DE miRNAs were further analyzed, along with previously identified differentially expressed genes (DEGs) from the same samples and predicted target genes, using multiple bioinformatic approaches, including target prediction tools and co-expression networks, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. We identified DE miRNAs and their gene targets associated with bovine intramuscular adipogenesis, and we provide a basis for further functional investigations.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Eric Duong ◽  
Jiening Xiao ◽  
Khai Le Quang ◽  
Patrice Naud ◽  
Yan- F Shi ◽  
...  

Introduction: Complete atrioventricular block (CAVB) causes arrhythmogenic remodeling and increases the risk of Torsades de Pointes (TdP) arrhythmias. MicroRNAs (miRs) are key regulators of gene expression that contribute to cardiac remodeling. Here, we assess microRNA changes after CAVB and their potential significance in arrhythmogenic cardiac remodeling. Methods: CAVB was induced in mice via His bundle ablation. Expression of miRs was evaluated by pan-microRNA microarray with qPCR confirmation on samples from controls and at 24 hrs and 4 wks post-CAVB. Arrhythmias were detected by continuous monitoring. MicroRNA target prediction algorithms were used to identify potential target genes. Biological confirmation of targets was by luciferase assay and overexpression (OE) studies in HEK and H9c2 cells respectively. Results: TdP occurred within 24 hrs in 6/17 CAVB mice, vs no controls. Ventricular tachyarrhythmia episodes were frequent at 4 wks CAVB (212±83 per 24 hrs) and were not seen in controls. CAVB was followed by increased left ventricular (LV) dimension (by 31%, ***p<.001), LV mass (by 33%, *p<.05) and LV fractional shortening (by 33%*) at 4 wks. Of >400 miRs assayed, only miR-135a was altered at 24 hrs (downregulated by 96%***, Fig. A), with 70% decrease at 4 wks. TargetScan predicted miR-135a regulation of the mineralocorticoid receptor (MCR), encoded by the NR3C2 gene. miR-135a OE suppressed NR3C2 3’UTR reporter activity 3.2-fold* (n=5, Fig. B). miR-135a OE did not affect NR3C2 mRNA (Fig. C) but significantly reduced NR3C2 protein expression (n=4, Fig. D). Coexpression with anti-miR-135a eliminated the NR3C2 downregulating effect of miR-135a OE. Conclusions: The mineralocorticoid receptor, encoded by the NR3C2 gene, is translationally regulated by miR-135a, a microRNA that is downregulated in the heart following CAVB in mice. These results implicate miR-135a/mineralocorticoid modulation in arrhythmogenic ventricular remodeling caused by CAVB.


2011 ◽  
Vol 434 (1) ◽  
pp. 83-92 ◽  
Author(s):  
Hiroko Inoue ◽  
Stavros Giannakopoulos ◽  
Christopher N. Parkhurst ◽  
Tatsushi Matsumura ◽  
Evelyn A. Kono ◽  
...  

The largest subunit of the mammalian SWI/SNF-A or BAF (BRG1-associated factor) chromatin-remodelling complex is encoded by two related cDNAs hOsa1/BAF250a and hOsa2/BAF250b that are unique to the BAF complex and absent in the related PBAF (Polybromo BAF). hOsa/BAF250 has been shown to interact with transcriptional activators and bind to DNA suggesting that it acts to target the remodelling complex to chromatin. To better understand the functions of hOsa2, we established inducible stable HeLa cell lines over-expressing FLAG–hOsa2 or a derivative lacking the ARID (AT-rich interactive domain) DNA-binding domain. Immunopurification of complexes containing hOsa2 that was followed by mass spectrometry and immunoblotting demonstrated the presence of BRG1 and known BAFs, but not hOsa1 or hBRM. Deletion of the ARID did not compromise the integrity of the complex. Induction of hOsa2 expression caused impaired cell growth and accumulation of cells in the G0/G1 cell cycle phase. Elevated levels of the p53 and p21 proteins were detected in these cells while c-Myc mRNA and protein levels were found to decrease. Chromatin immunoprecipitation and reporter assays suggested that hOsa2 had a direct effect on c-myc and p21 promoter activity. Thus hOsa2 plays an important role in controlling genes regulating the cell cycle.


2013 ◽  
Vol 7 ◽  
pp. BBI.S10501 ◽  
Author(s):  
Madhu Beta ◽  
Nalini Venkatesan ◽  
Madavan Vasudevan ◽  
Umashankar Vetrivel ◽  
Vikas Khetan ◽  
...  

Retinoblastoma (RB) is a malignant tumor of the retina seen in children, and potential non invasive biomarkers are in need for rapid diagnosis and for prognosticating the therapy. This study was undertaken to identify the differentially expressed miRNAs in the serum of children with RB in comparison with the normal age matched serum, to analyze its concurrence with the existing RB tumor miRNA profile, to identify its novel gene targets specific to RB, and to study the expression of a few of the identified oncogenic miRNAs in the advanced stage primary RB patient's serum sample. MiRNA profiling was performed on 14 pooled serum from children with advanced RB and 14 normal age matched serum samples, wherein 21 miRNAs were found to be upregulated (fold change ≥ +2.0, P ≤ 0.05) and 24 to be downregulated (fold change ≤ –2.0, P ≤ 0.05). Furthermore, intersection of 59 significantly deregulated miRNAs identified from RB tumor profiles with that of miRNAs detected in serum profile revealed that 33 miRNAs had followed a similar deregulation pattern in RB serum. Later we validated a few of the miRNAs (miRNA 17-92) identified by microarray in the RB patient serum samples (n = 20) by using qRT-PCR. Expression of the oncogenic miRNAs, miR-17, miR-18a, and miR-20a by qRT-PCR was significant in the serum samples exploring the potential of serum miRNAs identification as noninvasive diagnosis. Moreover, from miRNA gene target prediction, key regulatory genes of cell proliferation, apoptosis, and positive and negative regulatory networks involved in RB progression were identified in the gene expression profile of RB tumors. Therefore, these identified miRNAs and their corresponding target genes could give insights on potential biomarkers and key events involved in the RB pathway.


2020 ◽  
Vol 3 (12) ◽  
pp. e202000799
Author(s):  
Francesca Sardina ◽  
Alessandra Pisciottani ◽  
Manuela Ferrara ◽  
Davide Valente ◽  
Marialuisa Casella ◽  
...  

Hereditary Spastic Paraplegia (HSP) is a neurodegenerative disease most commonly caused by autosomal dominant mutations in the SPG4 gene encoding the microtubule-severing protein spastin. We hypothesise that SPG4-HSP is attributable to reduced spastin function because of haploinsufficiency; thus, therapeutic approaches which elevate levels of the wild-type spastin allele may be an effective therapy. However, until now, how spastin levels are regulated is largely unknown. Here, we show that the kinase HIPK2 regulates spastin protein levels in proliferating cells, in differentiated neurons and in vivo. Our work reveals that HIPK2-mediated phosphorylation of spastin at S268 inhibits spastin K48-poly-ubiquitination at K554 and prevents its neddylation-dependent proteasomal degradation. In a spastin RNAi neuronal cell model, overexpression of HIPK2, or inhibition of neddylation, restores spastin levels and rescues neurite defects. Notably, we demonstrate that spastin levels can be restored pharmacologically by inhibiting its neddylation-mediated degradation in neurons derived from a spastin mouse model of HSP and in patient-derived cells, thus revealing novel therapeutic targets for the treatment of SPG4-HSP.


Author(s):  
Elisabeth Findeiss ◽  
Sigrid C. Schwarz ◽  
Valentin Evsyukov ◽  
Thomas W. Rösler ◽  
Matthias Höllerhage ◽  
...  

Growing evidence suggests that epigenetic mechanisms like microRNA-mediated transcriptional regulation contribute to the pathogenesis of parkinsonism. In order to study the influence of microRNAs (miRNAs), we analyzed the miRNome 2 days prior to major cell death in α-synuclein-overexpressing Lund human mesencephalic neurons, a well-established cell model of Parkinson’s disease (PD), by next-generation sequencing. The expression levels of 23 miRNAs were significantly altered in α-synuclein-overexpressing cells, 11 were down- and 12 upregulated (P &lt; 0.01; non-adjusted). The in silico analysis of known target genes of these miRNAs was complemented by the inclusion of a transcriptome dataset (BeadChip) of the same cellular system, revealing the G0/G1 cell cycle transition to be markedly enriched. Out of 124 KEGG-annotated cell cycle genes, 15 were present in the miRNA target gene dataset and six G0/G1 cell cycle genes were found to be significantly altered upon α-synuclein overexpression, with five genes up- (CCND1, CCND2, and CDK4 at P &lt; 0.01; E2F3, MYC at P &lt; 0.05) and one gene downregulated (CDKN1C at P &lt; 0.001). Additionally, several of these altered genes are targeted by miRNAs hsa-miR-34a-5p and hsa-miR-34c-5p, which also modulate α-synuclein expression levels. Functional intervention by siRNA-mediated knockdown of the cell cycle gene cyclin D1 (CCND1) confirmed that silencing of cell cycle initiation is able to substantially reduce α-synuclein-mediated cytotoxicity. The present findings suggest that α-synuclein accumulation induces microRNA-mediated aberrant cell cycle activation in post-mitotic dopaminergic neurons. Thus, the mitotic cell cycle pathway at the level of miRNAs might offer interesting novel therapeutic targets for PD.


Sign in / Sign up

Export Citation Format

Share Document