scholarly journals Identification and Insilico Analysis of Retinoblastoma Serum microRNA Profile and Gene Targets towards Prediction of Novel Serum Biomarkers

2013 ◽  
Vol 7 ◽  
pp. BBI.S10501 ◽  
Author(s):  
Madhu Beta ◽  
Nalini Venkatesan ◽  
Madavan Vasudevan ◽  
Umashankar Vetrivel ◽  
Vikas Khetan ◽  
...  

Retinoblastoma (RB) is a malignant tumor of the retina seen in children, and potential non invasive biomarkers are in need for rapid diagnosis and for prognosticating the therapy. This study was undertaken to identify the differentially expressed miRNAs in the serum of children with RB in comparison with the normal age matched serum, to analyze its concurrence with the existing RB tumor miRNA profile, to identify its novel gene targets specific to RB, and to study the expression of a few of the identified oncogenic miRNAs in the advanced stage primary RB patient's serum sample. MiRNA profiling was performed on 14 pooled serum from children with advanced RB and 14 normal age matched serum samples, wherein 21 miRNAs were found to be upregulated (fold change ≥ +2.0, P ≤ 0.05) and 24 to be downregulated (fold change ≤ –2.0, P ≤ 0.05). Furthermore, intersection of 59 significantly deregulated miRNAs identified from RB tumor profiles with that of miRNAs detected in serum profile revealed that 33 miRNAs had followed a similar deregulation pattern in RB serum. Later we validated a few of the miRNAs (miRNA 17-92) identified by microarray in the RB patient serum samples (n = 20) by using qRT-PCR. Expression of the oncogenic miRNAs, miR-17, miR-18a, and miR-20a by qRT-PCR was significant in the serum samples exploring the potential of serum miRNAs identification as noninvasive diagnosis. Moreover, from miRNA gene target prediction, key regulatory genes of cell proliferation, apoptosis, and positive and negative regulatory networks involved in RB progression were identified in the gene expression profile of RB tumors. Therefore, these identified miRNAs and their corresponding target genes could give insights on potential biomarkers and key events involved in the RB pathway.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jing Mao ◽  
Tianmei Li ◽  
Di Fan ◽  
Hongli Zhou ◽  
Jianguo Feng ◽  
...  

Abstract Background Recent studies have shown that circular RNA (circRNA) is rich in microRNA (miRNA) binding sites. We have previously demonstrated that the antidepressant effect of ketamine is related to the abnormal expression of various miRNAs in the brain. This study determined the expression profile of circRNAs in the hippocampus of rats treated with ketamine. Methods The aberrantly expressed circRNAs in rat hippocampus after ketamine injection were analyzed by microarray chip, and we further validated these circRNAs by quantitative reverse-transcription PCR (qRT-PCR). The target genes of the different circRNAs were predicted using bioinformatic analyses, and the functions and signal pathways of these target genes were investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Results Microarray analysis showed that five circRNAs were aberrantly expressed in rat hippocampus after ketamine injection (fold change > 2.0, p < 0.05). The results from the qRT-PCR showed that one of the circRNAs was significantly increased (rno_circRNA_014900; fold change = 2.37; p = 0.03), while one was significantly reduced (rno_circRNA_005442; fold change = 0.37; p = 0.01). We discovered a significant enrichment in several GO terms and pathways associated with depression. Conclusion Our findings showed the abnormal expression of ketamine-induced hippocampal circRNAs in rats.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhaoyi Lu ◽  
Kai Su ◽  
Xiaomin Wang ◽  
Mingjie Zhang ◽  
Shiyin Ma ◽  
...  

Introduction: tRNA-derived small RNAs (tsRNAs), a class of small non-coding RNAs, are divided into two categories: tRNA-related fragments (tRFs) and tRNA halves (tiRNAs). Abnormal expression of tsRNAs has been found in diverse cancers, which indicates that further understanding of the function of tsRNAs will help identify new biomarkers and potential therapeutic targets. Until now, the underlying roles of tsRNAs in primary nasopharyngeal carcinoma (NPC) are still unknown.Methods: tRF and tiRNA sequencing was performed on four pairs of NPC tissues and healthy controls. Thirty pairs of NPC samples were used for quantitative real-time polymerase chain reaction (qRT-PCR) verification, and the ROC analysis was used to evaluate the diagnostic efficiency initially. Target prediction and bioinformatics analysis of validated tRFs and tiRNAs were conducted to explore the mechanisms of tsRNAs in NPC’s pathogenesis.Results: A total of 158 differentially expressed tRFs and tiRNAs were identified, of which 88 are upregulated and 70 are downregulated in NPC. Three validated tRFs in the results of qRT-PCR were consistent with the sequencing data: two upregulations (tRF-1:28-Val-CAC-2 and tRF-1:24-Ser-CGA-1-M3) and one downregulation (tRF-55:76-Arg-ACG-1-M2). The GO and KEGG pathway enrichment analysis showed that the potential target genes of validated tRFs are widely enriched in cancer pathways. The related modules may play an essential role in the pathogenesis of NPC.Conclusions: The tsRNAs may become a novel class of biological diagnostic indicators and possible targets for NPC.


2017 ◽  
Vol 14 (2) ◽  
Author(s):  
Sepideh Sadegh ◽  
Maryam Nazarieh ◽  
Christian Spaniol ◽  
Volkhard Helms

AbstractGene-regulatory networks are an abstract way of capturing the regulatory connectivity between transcription factors, microRNAs, and target genes in biological cells. Here, we address the problem of identifying enriched co-regulatory three-node motifs that are found significantly more often in real network than in randomized networks. First, we compare two randomization strategies, that either only conserve the degree distribution of the nodes’ in- and out-links, or that also conserve the degree distributions of different regulatory edge types. Then, we address the issue how convergence of randomization can be measured. We show that after at most 10 × |E| edge swappings, converged motif counts are obtained and the memory of initial edge identities is lost.


Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 700
Author(s):  
Bilal Ahmad Mir ◽  
Henry Reyer ◽  
Katrin Komolka ◽  
Siriluck Ponsuksili ◽  
Christa Kühn ◽  
...  

Intramuscular fat (IMF) is a meat quality indicator associated with taste and juiciness. IMF deposition, influenced by genetic and non-genetic factors, occurs through a transcriptionally coordinated process of adipogenesis. MicroRNAs (miRNAs) are transcriptional regulators of vital biological processes, including lipid metabolism and adipogenesis. However, in bovines, limited data on miRNA profiling and association with divergent intramuscular fat content, regulated exclusively by genetic parameters, have been reported. Here, a microarray experiment was performed to identify and characterize the miRNA expression pattern in the Musculus longissimus dorsi of F2-cross (Charolais × German Holstein) bulls with high and low IMF. A total of 38 differentially expressed miRNAs (DE miRNAs), including 33 upregulated and 5 downregulated (corrected p-value ≤ 0.05, FC ≥ ±1.2), were reported. Among DE miRNAs, the upregulated miRNAs miR-105a/b, miR-695, miR-1193, miR-1284, miR-1287-5p, miR-3128, miR-3178, miR-3910, miR-4443, miR-4445 and miR-4745, and the downregulated miRNAs miR-877-5p, miR-4487 and miR-4706 were identified as novel fat deposition regulators. DE miRNAs were further analyzed, along with previously identified differentially expressed genes (DEGs) from the same samples and predicted target genes, using multiple bioinformatic approaches, including target prediction tools and co-expression networks, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. We identified DE miRNAs and their gene targets associated with bovine intramuscular adipogenesis, and we provide a basis for further functional investigations.


2021 ◽  
Vol 13 ◽  
Author(s):  
Annamaria Vallelunga ◽  
Tommaso Iannitti ◽  
Sabrina Capece ◽  
Gerardina Somma ◽  
Maria Claudia Russillo ◽  
...  

Parkinson's disease (PD) and Multiple System Atrophy (MSA) are progressive neurodegenerative diseases with overlap of symptoms in early stages of disease. No reliable biomarker exists and the diagnosis is mainly based on clinical features. Several studies suggest that miRNAs are involved in PD and MSA pathogenesis. Our goal was to study two serum circulating microRNAs (miR-96-5p and miR-339-5p) as novel biomarkers for the differential diagnosis between PD and MSA. Serum samples were obtained from 51 PD patients, 52 MSA patients and 56 healthy controls (HC). We measured levels of miRNAs using quantitative PCR and compared the levels of miR-96-5p and miR-339-5p among PD, MSA and HC groups using a one-way analysis of variance. Correlations between miRNA expression and clinical data were calculated using Pearson's rho test. We used the miRTarBase to detect miRNA targets and STRING to evaluate co-expression relationship among target genes. MiR-96-5p was significantly increased in MSA patients compared with HC (Fold change (fc): 3.6; p = 0.0001) while it was decreased in PD patients compared with HC (Fold change: 4; p = 0.0002). Higher miR-96-5P levels were directly related to longer disease duration in MSA patients. We observed a significant increase of miR-339-5p in MSA patients compared with PD patients (fc: 2.5; p = 0.00013). miR-339-5p was increased in MSA patients compared with HC (fc: 2.4; p = 0.002). We identified 32 target genes of miR-96-5p and miR-339-5p, some of which are involved in neurodegenerative diseases. The study of those miRNAs could be useful to identify non-invasive biomarkers for early differential diagnosis between PD and MSA.


2020 ◽  
Author(s):  
Fabian Kern ◽  
Lena Krammes ◽  
Karin Danz ◽  
Caroline Diener ◽  
Tim Kehl ◽  
...  

Abstract MicroRNAs are regulators of gene expression. A wide-spread, yet not validated, assumption is that the targetome of miRNAs is non-randomly distributed across the transcriptome and that targets share functional pathways. We developed a computational and experimental strategy termed high-throughput miRNA interaction reporter assay (HiTmIR) to facilitate the validation of target pathways. First, targets and target pathways are predicted and prioritized by computational means to increase the specificity and positive predictive value. Second, the novel webtool miRTaH facilitates guided designs of reporter assay constructs at scale. Third, automated and standardized reporter assays are performed. We evaluated HiTmIR using miR-34a-5p, for which TNF- and TGFB-signaling, and Parkinson's Disease (PD)-related categories were identified and repeated the pipeline for miR-7-5p. HiTmIR validated 58.9% of the target genes for miR-34a-5p and 46.7% for miR-7-5p. We confirmed the targeting by measuring the endogenous protein levels of targets in a neuronal cell model. The standardized positive and negative targets are collected in the new miRATBase database, representing a resource for training, or benchmarking new target predictors. Applied to 88 target predictors with different confidence scores, TargetScan 7.2 and miRanda outperformed other tools. Our experiments demonstrate the efficiency of HiTmIR and provide evidence for an orchestrated miRNA-gene targeting.


2021 ◽  
Author(s):  
Sally Ibrahim ◽  
Mohamed Hedia ◽  
Mohamed O. Taqi ◽  
Mohamed K. Derbala ◽  
karima mahmoud ◽  
...  

Abstract Background: So far the intimate link between serum microRNA (miRNA) and uterine inflammation in mares is unknown. We aimed (I) to investigate the expression profile of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205 (II) and to measure the concentrations of interleukin 6 (IL-6), and prostaglandins (PGF2α& PGE2) in serum of Arabian mares with healthy and abnormal uterine status (endometritis).Methods and Results: This study was conducted on 80 Arabian mares; young (4-7 years), and old (8-14 years). These animals were divided into 48 sub-fertile including 16 young and 32 old mares suspected of endometritis and 32 fertile as control (24 young and 8 old) at stud farms. Serum samples were collected for measuring IL-6, PGF2α, and PGE2 concentrations, as well as serum miRNA isolation and qRT-PCR. Serum concentrations of IL-6, PGE2, and PGF2α were higher (P≤0.001) in mares with endometritis (young and old) compared to the control ones. Age of mares had a remarkable effect(0.001≤P≤0.01) onIL-6, PGE2, and PGF2αconcentrations. The relative abundance of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205 was higher (P≤0.001) in both young and old mares with endometritis. We noticed that eca-miR-155, eca-miR-223, eca-miR-200a, and eca-miR-205 revealed higher (0.001≤P≤0.01) expression level in old than young mares with endometritis. Conclusions: To the best of our knowledge, this is the first study revealed that serum miRNA and serum inflammatory mediators (IL-6, PGE2, and PGF2α) could be used as non-invasive gold standard biomarkers, and therefore might be served as an important additional diagnostic tool for endometritis in Arabian mares.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5951 ◽  
Author(s):  
Ruijiang Li ◽  
Hebing Chen ◽  
Shuai Jiang ◽  
Wanying Li ◽  
Hao Li ◽  
...  

Transcription factors (TFs) and microRNAs (miRNAs) are well-characterized trans-acting essential players in gene expression regulation. Growing evidence indicates that TFs and miRNAs can work cooperatively, and their dysregulation has been associated with many diseases including cancer. A unified picture of regulatory interactions of these regulators and their joint target genes would shed light on cancer studies. Although online resources developed to support probing of TF-gene and miRNA-gene interactions are available, online applications for miRNA-TF co-regulatory analysis, especially with a focus on cancers, are lacking. In light of this, we developed a web tool, namely CMTCN (freely available at http://www.cbportal.org/CMTCN), which constructs miRNA-TF co-regulatory networks and conducts comprehensive analyses within the context of particular cancer types. With its user-friendly provision of topological and functional analyses, CMTCN promises to be a reliable and indispensable web tool for biomedical studies.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Pei-yan Huang ◽  
Jun-guo Wu ◽  
Jun Gu ◽  
Tie-qi Zhang ◽  
Ling-feng Li ◽  
...  

Abstract Background Osteoarthritis (OA) is a chronic degenerative joint disease and the most frequent type of arthritis. This study aimed to identify the key miRNAs and genes associated with OA progression. Methods The GSE105027 (microRNA [miRNA/miR] expression profile; 12 OA samples and 12 normal samples) and GSE48556 (messenger RNA [mRNA] expression profile; 106 OA samples and 33 normal samples) datasets were selected from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and miRNAs (DEMs) were analyzed using the limma and ROCR packages in R, respectively. The target genes that negatively correlated with the DEMs were predicted, followed by functional enrichment analysis and construction of the miRNA-gene and miRNA-transcription factor (TF)-gene regulatory networks. Additionally, key miRNAs and genes were screened, and their expression levels were verified by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results A total of 1696 DEGs (739 upregulated and 957 downregulated) and 108 DEMs (56 upregulated and 52 downregulated) were identified in the OA samples. Furthermore, 56 target genes that negatively correlated with the DEMs were predicted and found to be enriched in three functional terms (e.g., positive regulation of intracellular protein transport) and three pathways (e.g., human cytomegalovirus infection). In addition, three key miRNAs (miR-98-5p, miR-7-5p, and miR-182-5p) and six key genes (murine double minute 2, MDM2; glycogen synthase kinase 3-beta, GSK3B; transmembrane P24-trafficking protein 10, TMED10; DDB1 and CUL4-associated factor 12, DCAF12; caspase 3, CASP3; and ring finger protein 44, RNF44) were screened, among which the miR-7-5p → TMED10/DCAF12, miR-98-5p → CASP3/RNF44, and miR-182-5p → GSK3B pairs were observed in the regulatory network. Moreover, the expression levels of TMED10, miR-7-5p, CASP3, miR-98-5p, GSK3B, and miR-182-5p showed a negative correlation with qRT-PCR verification. Conclusion MiR-98-5p, miR-7-5p, miR-182-5p, MDM2, GSK3B, TMED10, DCAF12, CASP3, and RNF44 may play critical roles in OA progression.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jiajia Chen ◽  
Liangzhi Li

Drought is a major abiotic stress that reduces rice development and yield. miRNAs (microRNAs) are known to mediate posttranscriptional regulation under drought stress. Although the importance of individual miRNAs has been established, the crosstalks between miRNAs and mRNAs remain unearthed. Here we performed microarray analysis of miRNAs and matched mRNA expression profiles of drought-treated rice cultivar Nipponbare. Drought-responsive miRNA-mRNA regulations were identified by a combination of a partial least square (PLS) regression approach and sequence-based target prediction. A drought-induced network with 13 miRNAs and 58 target mRNAs was constructed, and four miRNA coregulatory modules were revealed. Functional analysis suggested that drought-response miRNA targets are enriched in hormone signaling, lipid and carbohydrate metabolism, and antioxidant defense. 13 candidate miRNAs and target genes were validated by RT-qPCR, hierarchical clustering, and ROC analysis. Two target genes (DWARF-3 and P0651G05.2) of miRNA coregulatory modules were further verified by RLM-5′ RACE. Together, our integrative study of miRNA-mRNA interaction provided attractive candidates that will help elucidate the drought-response mechanisms in Oryza sativa.


Sign in / Sign up

Export Citation Format

Share Document