scholarly journals A distinct role for recombination repair factors in an early cellular response to transcription–replication conflicts

2020 ◽  
Vol 48 (10) ◽  
pp. 5467-5484 ◽  
Author(s):  
Xin Shao ◽  
Amalie M Joergensen ◽  
Niall G Howlett ◽  
Michael Lisby ◽  
Vibe H Oestergaard

Abstract Transcription–replication (T–R) conflicts are profound threats to genome integrity. However, whilst much is known about the existence of T–R conflicts, our understanding of the genetic and temporal nature of how cells respond to them is poorly established. Here, we address this by characterizing the early cellular response to transient T–R conflicts (TRe). This response specifically requires the DNA recombination repair proteins BLM and BRCA2 as well as a non-canonical monoubiquitylation-independent function of FANCD2. A hallmark of the TRe response is the rapid co-localization of these three DNA repair factors at sites of T–R collisions. We find that the TRe response relies on basal activity of the ATR kinase, yet it does not lead to hyperactivation of this key checkpoint protein. Furthermore, specific abrogation of the TRe response leads to DNA damage in mitosis, and promotes chromosome instability and cell death. Collectively our findings identify a new role for these well-established tumor suppressor proteins at an early stage of the cellular response to conflicts between DNA transcription and replication.

Author(s):  
Aleix Bayona-Feliu ◽  
Andrés Aguilera

DNA replication ensures the correct copying of the genome and the faithful transfer of the genetic information to the offspring. However, obstacles to replication fork (RF) progression cause RF stalling and compromise efficient genome duplication. Since replication uses the same DNA template as transcription, both transcription and replication must be coordinated to prevent Transcription-Replication Conflicts (TRCs) that could stall RF progression. Several factors contribute to limit the occurrence of such conflicts and their harmful impact on genome integrity. Increasing evidence indicates that chromatin homeostasis plays a key role in the cellular response to TRCs as well as in the preservation of genome integrity. Indeed, chromatin regulating enzymes are frequently mutated in cancer cells, a common characteristic of which is genome instability. Therefore, understanding the role of chromatin in TRC occurrence and resolution may help identify the molecular mechanism by which chromatin protects genome integrity, and the causes and physiological relevance of the high mutation rates of chromatin regulating factors in cancer. Here we review the current knowledge in the field, as well as the perspectives and future applications.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tulika Das ◽  
Surasree Pal ◽  
Agneyo Ganguly

Abstract RecQ helicases are a highly conserved class of DNA helicases that play crucial role in almost all DNA metabolic processes including replication, repair and recombination. They are able to unwind a wide variety of complex intermediate DNA structures that may result from cellular DNA transactions and hence assist in maintaining genome integrity. Interestingly, a huge number of recent reports suggest that many of the RecQ family helicases are directly or indirectly involved in regulating transcription and gene expression. On one hand, they can remove complex structures like R-loops, G-quadruplexes or RNA:DNA hybrids formed at the intersection of transcription and replication. On the other hand, emerging evidence suggests that they can also regulate transcription by directly interacting with RNA polymerase or recruiting other protein factors that may regulate transcription. This review summarizes the up to date knowledge on the involvement of three human RecQ family proteins BLM, WRN and RECQL5 in transcription regulation and management of transcription associated stress.


Author(s):  
Wenjing Huang ◽  
Tsubasa S. Matsui ◽  
Takumi Saito ◽  
Masahiro Kuragano ◽  
Masayuki Takahashi ◽  
...  

Cells adapt to applied cyclic stretch (CS) to circumvent chronic activation of proinflammatory signaling. Currently, the molecular mechanism of the selective disassembly of actin stress fibers (SFs) in the stretch direction, which occurs at the early stage of the cellular response to CS, remains controversial. Here we suggest that the mechanosensitive behavior of myosin II, a major cross-linker of SFs, primarily contributes to the directional disassembly of the actomyosin complex SFs in bovine vascular smooth muscle cells and human U2OS osteosarcoma cells. First, we identified that CS with a shortening phase that exceeds in speed the inherent contractile rate of individual SFs leads to the disassembly. To understand the biological basis, we investigated the effect of expressing myosin regulatory light chain mutants and found that SFs with less actomyosin activities disassemble more promptly upon CS. We consequently created a minimal mathematical model that recapitulates the salient features of the direction-selective and threshold-triggered disassembly of SFs to show that disassembly or, more specifically, unbundling of the actomyosin bundle SFs is enhanced with sufficiently fast cell shortening. We further demonstrated that similar disassembly of SFs is inducible in the presence of an active LIM-kinase-1 mutant that deactivates cofilin, suggesting that cofilin is dispensable as opposed to a previously proposed mechanism.


2000 ◽  
Vol 18 (19) ◽  
pp. 3360-3369 ◽  
Author(s):  
Lori J. Pierce ◽  
Myla Strawderman ◽  
Steven A. Narod ◽  
Ivo Oliviotto ◽  
Andrea Eisen ◽  
...  

PURPOSE: Recent laboratory data suggest a role for BRCA1/2 in the cellular response to DNA damage. There is a paucity of clinical data, however, examining the effect of radiotherapy (RT), which causes double-strand breaks, on breast tissue from BRCA1/2 mutation carriers. Thus the goals of this study were to compare rates of radiation-associated complications, in-breast tumor recurrence, and distant relapse in women with BRCA1/2 mutations treated with breast-conserving therapy (BCT) using RT with rates observed in sporadic disease. PATIENTS AND METHODS: Seventy-one women with a BRCA1/2 mutation and stage I or II breast cancer treated with BCT were matched 1:3 with 213 women with sporadic breast cancer. Conditional logistic regression models were used to compare matched cohorts for rates of complications and recurrence. RESULTS: Tumors from women in the genetic cohort were associated with high histologic (P = .0004) and nuclear (P = .009) grade and negative estrogen (P = .0001) and progesterone (P = .002) receptors compared with tumors from the sporadic cohort. Using Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer toxicity scoring, there were no significant differences in acute or chronic morbidity in skin, subcutaneous tissue, lung, or bone. The 5-year actuarial overall survival, relapse-free survival, and rates of tumor control in the treated breast for the patients in the genetic cohort were 86%, 78%, and 98%, respectively, compared with 91%, 80%, and 96%, respectively, for the sporadic cohort (P = not significant). CONCLUSION: There was no evidence of increased radiation sensitivity or sequelae in breast tissue heterozygous for a BRCA1/2 germline mutation compared with controls, and rates of tumor control in the breast and survival were comparable between BRCA1/2 carriers and controls at 5 years. Although additional follow-up is needed, these data may help in discussing treatment options in the management of early-stage hereditary breast cancer and should provide reassurance regarding the safety of administering RT to carriers of a germline BRCA1/2 mutation.


2000 ◽  
Vol 24 (11) ◽  
pp. 851-852
Author(s):  
A Collins

2011 ◽  
Vol 2011 ◽  
pp. 1-23 ◽  
Author(s):  
Tadanobu Takahashi ◽  
Takashi Suzuki

Membrane rafts are small (10–200 nm) sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Membrane rafts play an important role in viral infection cycles and viral virulence. Viruses are divided into four main classes, enveloped DNA virus, enveloped RNA virus, nonenveloped DNA virus, and nonenveloped RNA virus. General virus infection cycle is also classified into two sections, the early stage (entry process) and the late stage (assembly, budding, and release processes of virus particles). In the viral cycle, membrane rafts act as a scaffold of many cellular signal transductions, which are associated with symptoms caused by viral infections. In this paper, we describe the functions of membrane rafts in viral lifecycles and host cellular response according to each virus classification, each stage of the virus lifecycle, and each virus-induced signal transduction.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 124
Author(s):  
Bhavnita Soni ◽  
Shailza Singh

Macrophage phenotype plays a crucial role in the pathogenesis of Leishmanial infection. Pro-inflammatory cytokines signals through the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway that functions in parasite killing. Suppression of cytokine signaling (SOCS) is a well-known negative feedback regulator of the JAK/STAT pathway. However, change in the expression levels of SOCSs in correlation with the establishment of infection is not well understood. IL6 is a pleotropic cytokine that induces SOCS1 and SOCS3 expression through JAK-STAT signaling. Mathematical modeling of the TLR2 and IL6 signaling pathway has established the immune axis of SOCS1 and SOCS3 functioning in macrophage polarization during the early stage of Leishmania major infection. The ratio has been quantified both in silico and in vitro as 3:2 which is required to establish infection during the early stage. Furthermore, phosphorylated STAT1 and STAT3 have been established as an immunological cross talk between TLR2 and IL6 signaling pathways. Using synthetic biology approaches, peptide based immuno-regulatory circuits have been designed to target the activity of SOCS1 which can restore pro-inflammatory cytokine expression during infection. In a nutshell, we explored the potential of synthetic biology to address and rewire the immune response from Th2 to Th1 type during the early stage of leishmanial infection governed by SOCS1/SOCS3 immune axis.


Sign in / Sign up

Export Citation Format

Share Document