scholarly journals In vivo interactions of the Acanthamoeba TBP gene promoter

2004 ◽  
Vol 32 (4) ◽  
pp. 1251-1260 ◽  
Author(s):  
L. Chen
Keyword(s):  
Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 480
Author(s):  
Rakshitha Pandulal Miskin ◽  
Janine S. A. Warren ◽  
Abibatou Ndoye ◽  
Lei Wu ◽  
John M. Lamar ◽  
...  

In the current study, we demonstrate that integrin α3β1 promotes invasive and metastatic traits of triple-negative breast cancer (TNBC) cells through induction of the transcription factor, Brain-2 (Brn-2). We show that RNAi-mediated suppression of α3β1 in MDA-MB-231 cells caused reduced expression of Brn-2 mRNA and protein and reduced activity of the BRN2 gene promoter. In addition, RNAi-targeting of Brn-2 in MDA-MB-231 cells decreased invasion in vitro and lung colonization in vivo, and exogenous Brn-2 expression partially restored invasion to cells in which α3β1 was suppressed. α3β1 promoted phosphorylation of Akt in MDA-MB-231 cells, and treatment of these cells with a pharmacological Akt inhibitor (MK-2206) reduced both Brn-2 expression and cell invasion, indicating that α3β1-Akt signaling contributes to Brn-2 induction. Analysis of RNAseq data from patients with invasive breast carcinoma revealed that high BRN2 expression correlates with poor survival. Moreover, high BRN2 expression positively correlates with high ITGA3 expression in basal-like breast cancer, which is consistent with our experimental findings that α3β1 induces Brn-2 in TNBC cells. Together, our study demonstrates a pro-invasive/pro-metastatic role for Brn-2 in breast cancer cells and identifies a role for integrin α3β1 in regulating Brn-2 expression, thereby revealing a novel mechanism of integrin-dependent breast cancer cell invasion.


1997 ◽  
Vol 19 (2) ◽  
pp. 163-172 ◽  
Author(s):  
K Chu ◽  
HH Zingg

We have previously shown that COUP-TFII and Ear-2, two members of the nuclear orphan receptor family, are able to repress oestrogen-stimulated transcriptional activity of the human oxytocin (OT) gene promoter by binding to a site that overlaps with the oestrogen response element (ERE) present in the 5' flanking region of the gene. Although most nuclear receptor-mediated transcriptional repression conforms with the paradigm of passive repression and involves competitive binding to an activator site, active repression, i.e. silencing of basal promoter activity, has been observed in a limited number of cases. Here we show by co-transfection experiments using COUP-TFII and Ear-2 expression vectors and reporter constructs containing OT gene promoter fragments linked to the chloramphenicol acetyltransferase gene that both COUP-TFII and Ear-2 are capable of silencing basal OT gene promoter activity by 54 and 75% respectively. 5' Deletion and footprint analyses revealed two areas of functionally important interaction sites: (1) a direct TGACC(T/C) repeat overlapping the ERE and (2) a more promoter-proximal area centred at - 90 containing three imperfect direct repeats (R1-R3) spaced by four nucleotides each. Mutagenesis of reporter constructs as well as electrophoretic mobility-shift assays demonstrated that each of the three proximal repeats R1-R3 contributed to orphan receptor binding and the silencing effect. Inasmuch as the orphan receptor-binding sites are not involved in mediating basal transcriptional activity of the OT gene promoter, the observed effects are best interpreted as active repression or promoter silencing. Moreover, since COUP-TFII and Ear-2 are both co-expressed in OT-expressing uterine epithelial cells, the novel transcriptional effects described here are likely to be of functional importance in the fine-tuning of uterine OT gene expression in vivo.


2003 ◽  
Vol 308 (1) ◽  
pp. 139-147 ◽  
Author(s):  
Henrikki Santti ◽  
Laura Mikkonen ◽  
Sirpa Hirvonen-Santti ◽  
Jorma Toppari ◽  
Olli A Jänne ◽  
...  

Endocrinology ◽  
2012 ◽  
Vol 153 (8) ◽  
pp. 3692-3700 ◽  
Author(s):  
Hui-Ping Gu ◽  
Sen Lin ◽  
Ming Xu ◽  
Hai-Yi Yu ◽  
Xiao-Jun Du ◽  
...  

Myocardial fibrosis is a key pathological change in a variety of heart diseases contributing to the development of heart failure, arrhythmias, and sudden death. Recent studies have shown that relaxin prevents and reverses cardiac fibrosis. Endogenous expression of relaxin was elevated in the setting of heart disease; the extent of such up-regulation, however, is insufficient to exert compensatory actions, and the mechanism regulating relaxin expression is poorly defined. In the rat relaxin-1 (RLN1, Chr1) gene promoter region we found presence of repeated guanine (G)-rich sequences, which allowed formation and stabilization of G-quadruplexes with the addition of a G-quadruplex interactive ligand berberine. The G-rich sequences and the G-quadruplexes were localized adjacent to the binding motif of signal transducer and activator of transcription (STAT)3, which negatively regulates relaxin expression. Thus, we hypothesized that the formation and stabilization of G-quadruplexes by berberine could influence relaxin expression. We found that berberine-induced formation of G-quadruplexes did increase relaxin gene expression measured at mRNA and protein levels. Formation of G-quadruplexes significantly reduced STAT3 binding to the promoter of relaxin gene. This was associated with consequent increase in the binding of RNA polymerase II and STAT5a to relaxin gene promoter. In cardiac fibroblasts and rats treated with angiotensin II, berberine was found to suppress fibroblast activation, collagen synthesis, and extent of cardiac fibrosis through up-regulating relaxin. The antifibrotic action of berberine in vitro and in vivo was similar to that by exogenous relaxin. Our findings document a novel therapeutic strategy for fibrosis through up-regulating expression of endogenous relaxin.


2008 ◽  
Vol 412 (2) ◽  
pp. 287-298 ◽  
Author(s):  
Maria Ekerot ◽  
Marios P. Stavridis ◽  
Laurent Delavaine ◽  
Michael P. Mitchell ◽  
Christopher Staples ◽  
...  

DUSP6 (dual-specificity phosphatase 6), also known as MKP-3 [MAPK (mitogen-activated protein kinase) phosphatase-3] specifically inactivates ERK1/2 (extracellular-signal-regulated kinase 1/2) in vitro and in vivo. DUSP6/MKP-3 is inducible by FGF (fibroblast growth factor) signalling and acts as a negative regulator of ERK activity in key and discrete signalling centres that direct outgrowth and patterning in early vertebrate embryos. However, the molecular mechanism by which FGFs induce DUSP6/MKP-3 expression and hence help to set ERK1/2 signalling levels is unknown. In the present study, we demonstrate, using pharmacological inhibitors and analysis of the murine DUSP6/MKP-3 gene promoter, that the ERK pathway is critical for FGF-induced DUSP6/MKP-3 transcription. Furthermore, we show that this response is mediated by a conserved binding site for the Ets (E twenty-six) family of transcriptional regulators and that the Ets2 protein, a known target of ERK signalling, binds to the endogenous DUSP6/MKP-3 promoter. Finally, the murine DUSP6/MKP-3 promoter coupled to EGFP (enhanced green fluorescent protein) recapitulates the specific pattern of endogenous DUSP6/MKP-3 mRNA expression in the chicken neural plate, where its activity depends on FGFR (FGF receptor) and MAPK signalling and an intact Ets-binding site. These findings identify a conserved Ets-factor-dependent mechanism by which ERK signalling activates DUSP6/MKP-3 transcription to deliver ERK1/2-specific negative-feedback control of FGF signalling.


1988 ◽  
Vol 8 (10) ◽  
pp. 4174-4184
Author(s):  
A C Johnson ◽  
Y Jinno ◽  
G T Merlino

The epidermal growth factor (EGF) receptor is the functional target of the mitogen EGF and the cellular homolog of the avian erythroblastosis virus erbB oncogene product. Regulation of expression of the proto-oncogene encoding the EGF receptor can be elucidated by studying the structure and function of the gene promoter outside the confines of the cell. Previously, we reported the isolation of the human EGF receptor gene promoter. The promoter is highly GC rich, contains no TATA or CAAT box, and has multiple transcription start sites. An S1 nuclease-sensitive site has now been found 80 to 110 base pairs (bp) upstream from the major in vivo transcription initiation site. Two sets of direct repeat sequences were found in this area; both conform to the motif TCCTCCTCC. When deletion mutations were made in this region of the promoter by using either Bal 31 exonuclease or S1 nuclease, we found that in vivo activity dropped three- to fivefold, on the basis of transient-transfection analysis. Examination of nuclear protein binding to normal and mutated promoter DNAs by gel retardation analysis and DNase I footprinting revealed that two specific factors bind to the direct repeat region but cannot bind to the S1 nuclease-mutated promoter. One of the specific factors is the transcription factor Sp1. The results suggest that these nuclear trans-acting factors interact with the S1 nuclease-sensitive region of the EGF receptor gene promoter and either directly or indirectly stimulate transcription.


2003 ◽  
Vol 80 ◽  
pp. 44
Author(s):  
Helen H. Kim ◽  
Andrew Wolfe ◽  
Carilyn J. Nash ◽  
Sally Radovick

1995 ◽  
Vol 15 (8) ◽  
pp. 4648-4656 ◽  
Author(s):  
M H Paalman ◽  
S L Henderson ◽  
B Sollner-Webb

We show that the mouse ribosomal DNA (rDNA) spacer promoter acts in vivo to stimulate transcription from a downstream rRNA gene promoter. This augmentation of mammalian RNA polymerase I transcription is observed in transient-transfection experiments with three different rodent cell lines, under noncompetitive as well as competitive transcription conditions, over a wide range of template concentrations, whether or not the enhancer repeats alone stimulate or repress expression from the downstream gene promoter. Stimulation of gene promoter transcription by the spacer promoter requires the rDNA enhancer sequences to be present between the spacer promoter and gene promoter and to be oriented as in native rDNA. Stimulation also requires that the spacer promoter be oriented toward the enhancer and gene promoter. However, stimulation does not correlate with transcription from the spacer promoter because the level of stimulation is not altered by either insertion of a functional mouse RNA polymerase I transcriptional terminator between the spacer promoter and enhancer or replacement with a much more active heterologous polymerase I promoter. Further analysis with a series of mutated spacer promoters indicates that the stimulatory activity does not reside in the major promoter domains but requires the central region of the promoter that has been correlated with enhancer responsiveness in vivo.


2004 ◽  
Vol 32 (6) ◽  
pp. 1095-1097 ◽  
Author(s):  
J.A. Plumb ◽  
N. Steele ◽  
P.W. Finn ◽  
R. Brown

Histone deacetylation and DNA methylation have a central role in the control of gene expression, including transcriptional repression of tumour suppressor genes. Loss of DNA mismatch repair due to methylation of the hMLH1 gene promoter results in resistance to cisplatin in vitro and in vivo. The cisplatin-resistant cell line A2780/cp70 is 8-fold more resistant to cisplatin than the non-resistant cell line, and has the hMLH1 gene methylated. Treatment with an inhibitor of DNA methyltransferase, DAC (2-deoxy-5′-azacytidine), results in a partial reversal of DNA methylation, re-expression of MLH1 (mutL homologue 1) and sensitization to cisplatin both in vitro and in vivo. PXD101 is a novel hydroxamate type histone deacetylase inhibitor that shows antitumour activity in vivo and is currently in phase I clinical evaluation. Treatment of A2780/cp70 tumour-bearing mice with DAC followed by PXD101 results in a marked increase in the number of cells that re-express MLH1. Since the clinical use of DAC may be limited by toxicity and eventual re-methylation of genes, we suggest that the combination of DAC and PXD101 could have a role in increasing the efficacy of chemotherapy in patients with tumours that lack MLH1 expression due to hMLH1 gene promoter methylation.


Sign in / Sign up

Export Citation Format

Share Document