The nuclear orphan receptors COUP-TFII and Ear-2 act as silencers of the human oxytocin gene promoter

1997 ◽  
Vol 19 (2) ◽  
pp. 163-172 ◽  
Author(s):  
K Chu ◽  
HH Zingg

We have previously shown that COUP-TFII and Ear-2, two members of the nuclear orphan receptor family, are able to repress oestrogen-stimulated transcriptional activity of the human oxytocin (OT) gene promoter by binding to a site that overlaps with the oestrogen response element (ERE) present in the 5' flanking region of the gene. Although most nuclear receptor-mediated transcriptional repression conforms with the paradigm of passive repression and involves competitive binding to an activator site, active repression, i.e. silencing of basal promoter activity, has been observed in a limited number of cases. Here we show by co-transfection experiments using COUP-TFII and Ear-2 expression vectors and reporter constructs containing OT gene promoter fragments linked to the chloramphenicol acetyltransferase gene that both COUP-TFII and Ear-2 are capable of silencing basal OT gene promoter activity by 54 and 75% respectively. 5' Deletion and footprint analyses revealed two areas of functionally important interaction sites: (1) a direct TGACC(T/C) repeat overlapping the ERE and (2) a more promoter-proximal area centred at - 90 containing three imperfect direct repeats (R1-R3) spaced by four nucleotides each. Mutagenesis of reporter constructs as well as electrophoretic mobility-shift assays demonstrated that each of the three proximal repeats R1-R3 contributed to orphan receptor binding and the silencing effect. Inasmuch as the orphan receptor-binding sites are not involved in mediating basal transcriptional activity of the OT gene promoter, the observed effects are best interpreted as active repression or promoter silencing. Moreover, since COUP-TFII and Ear-2 are both co-expressed in OT-expressing uterine epithelial cells, the novel transcriptional effects described here are likely to be of functional importance in the fine-tuning of uterine OT gene expression in vivo.

2006 ◽  
Vol 26 (4) ◽  
pp. 1347-1354 ◽  
Author(s):  
Ruishan Wang ◽  
Yun-wu Zhang ◽  
Ping Sun ◽  
Runzhong Liu ◽  
Xian Zhang ◽  
...  

ABSTRACT Gamma-secretase, which is responsible for the intramembranous cleavage of Alzheimer's β-amyloid precursor protein (APP), the signaling receptor Notch, and many other substrates, is a multiprotein complex consisting of at least four components: presenilin (PS), nicastrin, APH-1, and PEN-2. Despite the fact that PEN-2 is known to mediate endoproteolytic cleavage of full-length PS and APH-1 and nicastrin are required for maintaining the stability of the complex, the detailed physiological function of each component remain elusive. Unlike that of PS, the transcriptional regulation of PEN-2, APH-1, and nicastrin has not been investigated. Here, we characterized the upstream regions of the human PEN-2 gene and identified a 238-bp fragment located 353 bp upstream of the translational start codon as the key region necessary for the promoter activity. Further analysis revealed a CREB binding site located in the 238-bp region that is essential for the transcriptional activity of the PEN-2 promoter. Mutation of the CREB site abolished the transcriptional activity of the PEN-2 promoter. Electrophoretic mobility shift assays and chromatin immunoprecipitation analysis showed the binding of CREB to the PEN-2 promoter region both in vitro and in vivo. Activation of the CREB transcriptional factor by forskolin dramatically promoted the expression of PEN-2 mRNA and protein, whereas the other components of the γ-secretase complex remained unaffected. Forskolin treatment slightly increases the secretion of soluble APPα and Aβ without affecting Notch cleavage. These results demonstrate that expression of PEN-2 is regulated by CREB and suggest that the specific control of PEN-2 expression may imply additional physiological functions uniquely assigned to PEN-2.


Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2924-2933 ◽  
Author(s):  
Tohru Ikuta ◽  
Yuet Wai Kan ◽  
Paul S. Swerdlow ◽  
Douglas V. Faller ◽  
Susan P. Perrine

Abstract The mechanisms by which pharmacologic agents stimulate γ-globin gene expression in β-globin disorders has not been fully established at the molecular level. In studies described here, nucleated erythroblasts were isolated from patients with β-globin disorders before and with butyrate therapy, and globin biosynthesis, mRNA, and protein-DNA interactions were examined. Expression of γ-globin mRNA increased twofold to sixfold above baseline with butyrate therapy in 7 of 8 patients studied. A 15% to 50% increase in γ-globin protein synthetic levels above baseline γ globin ratios and a relative decrease in β-globin biosynthesis were observed in responsive patients. Extensive new in vivo footprints were detected in erythroblasts of responsive patients in four regions of the γ-globin gene promoter, designated butyrate-response elements gamma 1-4 (BRE-G1-4). Electrophoretic mobility shift assays using BRE-G1 sequences as a probe demonstrated that new binding of two erythroid-specific proteins and one ubiquitous protein, CP2, occurred with treatment in the responsive patients and did not occur in the nonresponder. The BRE-G1 sequence conferred butyrate inducibility in reporter gene assays. These in vivo protein-DNA interactions in human erythroblasts in which γ-globin gene expression is being altered strongly suggest that nuclear protein binding, including CP2, to the BRE-G1 region of the γ-globin gene promoter mediates butyrate activity on γ-globin gene expression. © 1998 by The American Society of Hematology.


2001 ◽  
Vol 280 (5) ◽  
pp. C1262-C1276 ◽  
Author(s):  
Carola E. Wright ◽  
P. W. Bodell ◽  
F. Haddad ◽  
A. X. Qin ◽  
K. M. Baldwin

The main goal of this study was to examine the transcriptional activity of different-length β-myosin heavy chain (β-MHC) promoters in the hypertensive rodent heart using the direct gene transfer approach. A hypertensive state was induced by abdominal aortic constriction (AbCon) sufficient to elevate mean arterial pressure by ∼45% relative to control. Results show that β-MHC promoter activity of all tested wild-type constructs, i.e., −3500, −408, −299, −215, −171, and −71 bp, was significantly increased in AbCon hearts. In the normal control hearts, expression of the −71-bp construct was comparable to that of the promoterless vector, but its induction by AbCon was comparable to that of the other constructs. Additional results, based on mutation analysis and DNA gel mobility shift assays targeting βe1, βe2, GATA, and βe3 elements, show that these previously defined cis-elements in the proximal promoter are indeed involved in maintaining basal promoter activity; however, none of these elements, either individually or collectively, appear to be major players in mediating the hypertension response of the β-MHC gene. Collectively, these results indicate that three separate regions on the β-MHC promoter are involved in the induction of the gene in response to hypertension: 1) a distal region between −408 and −3500 bp, 2) a proximal region between −299 and −215 bp, and 3) a basal region within −71 bp of the transcription start site. Future research needs to further characterize these responsive regions to more fully delineate β-MHC transcriptional regulation in response to pressure overload.


1998 ◽  
Vol 18 (10) ◽  
pp. 5852-5860 ◽  
Author(s):  
Frédérique Verdier ◽  
Raquel Rabionet ◽  
Fabrice Gouilleux ◽  
Christian Beisenherz-Huss ◽  
Paule Varlet ◽  
...  

ABSTRACT Two distinct genes encode the closely related signal transducer and activator of transcription proteins STAT5A and STAT5B. The molecular mechanisms of gene regulation by STAT5 and, particularly, the requirement for both STAT5 isoforms are still undetermined. Only a few STAT5 target genes, among them the CIS (cytokine-inducible SH2-containing protein) gene, have been identified. We cloned the human CIS gene and studied the human CIS gene promoter. This promoter contains four STAT binding elements organized in two pairs. By electrophoretic mobility shift assay studies using nuclear extracts of UT7 cells stimulated with erythropoietin, we showed that these four sequences bound to STAT5-containing complexes that exhibited different patterns and affinities: the three upstream STAT binding sequences bound to two distinct STAT5-containing complexes (C0 and C1) and the downstream STAT box bound only to the slower-migrating C1 band. Using nuclear extracts from COS-7 cells transfected with expression vectors for the prolactin receptor, STAT5A, and/or STAT5B, we showed that the C1 complex was composed of a STAT5 tetramer and was dependent on the presence of STAT5A. STAT5B lacked this property and bound with a stronger affinity than did STAT5A to the four STAT sequences as a homodimer (C0 complex). This distinct biochemical difference between STAT5A and STAT5B was confirmed with purified activated STAT5 recombinant proteins. Moreover, we showed that the presence on the same side of the DNA helix of a second STAT sequence increased STAT5 binding and that only half of the palindromic STAT binding sequence was sufficient for the formation of a STAT5 tetramer. Again, STAT5A was essential for this cooperative tetrameric association. This property distinguishes STAT5A from STAT5B and could be essential to explain the transcriptional regulation diversity of STAT5.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 693 ◽  
Author(s):  
Sébastien Dupasquier ◽  
Philippe Blache ◽  
Laurence Picque Lasorsa ◽  
Han Zhao ◽  
Jean-Daniel Abraham ◽  
...  

Inactivating mutations of the tumor suppressor Adenomatosis Polyposis Coli (APC), which are found in familial adenomatosis polyposis and in 80% of sporadic colorectal cancers (CRC), result in constitutive activation of the Wnt/β-catenin pathway and tumor development in the intestine. These mutations disconnect the Wnt/β-catenin pathway from its Wnt extracellular signal by inactivating the APC/GSK3-β/axin destruction complex of β-catenin. This results in sustained nuclear accumulation of β-catenin, followed by β-catenin-dependent co-transcriptional activation of Wnt/β-catenin target genes. Thus, mechanisms acting downstream of APC, such as those controlling β-catenin stability and/or co-transcriptional activity, are attractive targets for CRC treatment. Protein Kinase C-α (PKCα) phosphorylates the orphan receptor RORα that then inhibits β-catenin co-transcriptional activity. PKCα also phosphorylates β-catenin, leading to its degradation by the proteasome. Here, using both in vitro (DLD-1 cells) and in vivo (C57BL/6J mice) PKCα knock-in models, we investigated whether enhancing PKCα function could be beneficial in CRC treatment. We found that PKCα is infrequently mutated in CRC samples, and that inducing PKCα function is not deleterious for the normal intestinal epithelium. Conversely, di-terpene ester-induced PKCα activity triggers CRC cell death. Together, these data indicate that PKCα is a relevant drug target for CRC treatment.


2002 ◽  
Vol 283 (4) ◽  
pp. C1065-C1072 ◽  
Author(s):  
Ashish K. Gupta ◽  
Bruce C. Kone

Transcriptional activation of the inducible nitric oxide synthase (iNOS) gene requires multiple interactions of cis elements and trans-acting factors. Previous in vivo footprinting studies (Goldring CE, Reveneau S, Algarte M, and Jeannin JF. Nucleic Acids Res 24: 1682–1687, 1996) of the murine iNOS gene demonstrated lipopolysaccharide-inducible protection of guanines in the region −904/−883, which includes an E-box motif. In this report, by using site-directed mutagenesis of the −893/−888 E-box and correlating functional assays of the mutated iNOS promoter with upstream stimulatory factor (USF) DNA-binding activities, we demonstrate that the −893/−888 E-box motif is functionally required for iNOS regulation in murine mesangial cells and that USFs are in vivo components of the iNOS transcriptional response complex. Mutation of the E-box sequence augmented the iNOS response to interleukin-1β (IL-1β) in transiently transfected mesangial cells. Gel mobility shift assays demonstrated that USFs cannot bind to the −893/−888 E-box promoter region when the E-box is mutated. Cotransfection of USF-1 and USF-2 expression vectors with iNOS promoter-luciferase reporter constructs suppressed IL-1β-simulated iNOS promoter activity. Cotransfection of dominant-negative USF-2 mutants lacking the DNA binding domain or cis-element decoys containing concatamers of the −904/−883 region augmented IL-1β stimulation of iNOS promoter activity. Gel mobility shift assays showed that only USF-1 and USF-2 supershifted the USF protein-DNA complexes. These results demonstrated that USF binding to the E-box at −893/−888 serves to trans-repress basal expression and IL-1β induction of the iNOS promoter.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Guoping Cao ◽  
Shenglan Gong ◽  
Fengxue Zhang ◽  
Wenjun Fu

Previous studies have revealed that uncontrollable stress can impair the synaptic plasticity and firing property of hippocampal neurons, which influenced various hippocampal-dependent tasks including memory, cognition, behavior, and mood. In this work, we had investigated the effects and mechanisms of the Chinese herbal medicine Xiao Yao San (XYS) against corticosterone-induced stress injury in primary hippocampal neurons (PHN) cells. We found that XYS and RU38486 could increase cell viabilities and decrease cell apoptosis by MTT, immunofluorescence, and flow cytometry assays. In addition, we observed that XYS notably inhibited the nuclear translocation of GR and upregulated the mRNA and protein expressions levels of Caveolin-1, GR, BDNF, TrkB, and FKBP4. However, XYS downregulated the FKBP51 expressions. Furthermore, the results of the electrophoretic mobility shift assay (EMSA) and double luciferase reporter gene detection indicated that FKBP4 promotes the transcriptional activity of GR reaction element (GRE) by binding with GR, and FKBP51 processed the opposite action. Thein vivoexperiment also proved the functions of XYS. These results suggested that XYS showed an efficient neuroprotection against corticosterone-induced stress injury in PHN cells by upregulating GRE transcriptional activity, which should be developed as a potential candidate for treating stress injury in the future.


2002 ◽  
Vol 366 (2) ◽  
pp. 633-641 ◽  
Author(s):  
Yuanfang LIU ◽  
Wei SHEN ◽  
Patricia L. BRUBAKER ◽  
Klaus H. KAESTNER ◽  
Daniel J. DRUCKER

Members of the Forkhead box a (Foxa) transcription factor family are expressed in the liver, pancreatic islets and intestine and both Foxa1 and Foxa2 regulate proglucagon gene transcription. As Foxa proteins exhibit overlapping DNA-binding specificities, we examined the role of Foxa3 [hepatocyte nuclear factor (HNF)-3γ] in control of proglucagon gene expression. Foxa3 was detected by reverse transcriptase PCR in glucagon-producing cell lines and binds to the rat proglucagon gene G2 promoter element in GLUTag enteroendocrine cells. Although Foxa3 increased rat proglucagon promoter activity in BHK fibroblasts, augmentation of Foxa3 expression did not increase proglucagon promoter activity in GLUTag cells. Furthermore, adenoviral Foxa3 expression did not affect endogenous proglucagon gene expression in islet or intestinal endocrine cell lines. Although Foxa3-/- mice exhibit mild hypoglycaemia during a prolonged fast, the levels of proglucagon-derived peptides and proglucagon mRNA transcripts were comparable in tissues from wild-type and Foxa3-/- mice. These findings identify Foxa3 as a member of the proglucagon gene G2 element binding-protein family that, unlike Foxa1, is not essential for control of islet or intestinal proglucagon gene expression in vivo.


Sign in / Sign up

Export Citation Format

Share Document