scholarly journals MethylCal: Bayesian calibration of methylation levels

2019 ◽  
Vol 47 (14) ◽  
pp. e81-e81
Author(s):  
Eguzkine Ochoa ◽  
Verena Zuber ◽  
Nora Fernandez-Jimenez ◽  
Jose Ramon Bilbao ◽  
Graeme R Clark ◽  
...  

Abstract Bisulfite amplicon sequencing has become the primary choice for single-base methylation quantification of multiple targets in parallel. The main limitation of this technology is a preferential amplification of an allele and strand in the PCR due to methylation state. This effect, known as ‘PCR bias', causes inaccurate estimation of the methylation levels and calibration methods based on standard controls have been proposed to correct for it. Here, we present a Bayesian calibration tool, MethylCal, which can analyse jointly all CpGs within a CpG island (CGI) or a Differentially Methylated Region (DMR), avoiding ‘one-at-a-time' CpG calibration. This enables more precise modeling of the methylation levels observed in the standard controls. It also provides accurate predictions of the methylation levels not considered in the controlled experiment, a feature that is paramount in the derivation of the corrected methylation degree. We tested the proposed method on eight independent assays (two CpG islands and six imprinting DMRs) and demonstrated its benefits, including the ability to detect outliers. We also evaluated MethylCal’s calibration in two practical cases, a clinical diagnostic test on 18 patients potentially affected by Beckwith–Wiedemann syndrome, and 17 individuals with celiac disease. The calibration of the methylation levels obtained by MethylCal allows a clearer identification of patients undergoing loss or gain of methylation in borderline cases and could influence further clinical or treatment decisions.

2019 ◽  
Author(s):  
Eguzkine Ochoa ◽  
Verena Zuber ◽  
Nora Fernandez-Jimenez ◽  
Jose Ramon Bilbao ◽  
Graeme R. Clark ◽  
...  

Bisulfite amplicon sequencing has become the primary choice for single-base methylation quantification of multiple targets in parallel. The main limitation of this technology is a preferential amplification of an allele and strand in the PCR due to methylation state. This effect, known as “PCR bias”, causes inaccurate estimation of the methylation levels and calibration methods based on standard controls have been proposed to correct for it. Here, we present a Bayesian calibration tool, MethylCal, which can analyse jointly all CpGs within a DMR or CpG island, avoiding “one-at-a-time” CpG calibration. This enables more precise modeling of the methylation levels observed in the standard controls. It also provides accurate predictions of the methylation levels not considered in the controlled experiment, a feature that is paramount in the derivation of the corrected methylation degree. We tested the proposed method on eight independent assays (two CpG islands and six imprinting DMRs) and demonstrated its benefits, including the ability to detect outliers. We also evaluated MethylCal’s calibration in two practical cases, a clinical diagnostic test on 18 patients potentially affected by Beckwith-Wiedemann syndrome, and 17 individuals with celiac disease. The calibration of the methylation levels obtained by MethylCal allows a clearer identification of patients undergoing loss or gain of methylation in borderline cases and could influence further clinical or treatment decisions. MethylCal is availability as an R package onhttps://github.com/lb664/MethylCal.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 853
Author(s):  
Siti Aisyah Faten Mohamed Sa’dom ◽  
Sweta Raikundalia ◽  
Shaharum Shamsuddin ◽  
Wei Cun See Too ◽  
Ling Ling Few

Choline kinase (CK) is the enzyme catalyzing the first reaction in CDP-choline pathway for the biosynthesis of phosphatidylcholine. Higher expression of the α isozyme of CK has been implicated in carcinogenesis, and inhibition or downregulation of CKα (CHKA) is a promising anticancer approach. This study aimed to investigate the regulation of CKα expression by DNA methylation of the CpG islands found on the promoter of this gene in MCF-7 cells. Four CpG islands have been predicted in the 2000 bp promoter region of ckα (chka) gene. Six CpG island deletion mutants were constructed using PCR site-directed mutagenesis method and cloned into pGL4.10 vectors for promoter activity assays. Deletion of CpG4C region located between –225 and –56 significantly increased the promoter activity by 4-fold, indicating the presence of important repressive transcription factor binding site. The promoter activity of methylated full-length promoter was significantly lower than the methylated CpG4C deletion mutant by 16-fold. The results show that DNA methylation of CpG4C promotes the binding of the transcription factor that suppresses the promoter activity. Electrophoretic mobility shift assay analysis showed that cytosine methylation at MZF1 binding site in CpG4C increased the binding of putative MZF1 in nuclear extract. In conclusion, the results suggest that DNA methylation decreased the promoter activity by promoting the binding of putative MZF1 transcription factor at CpG4C region of the ckα gene promoter.


1993 ◽  
Vol 13 (9) ◽  
pp. 5538-5548
Author(s):  
Y C Choi ◽  
C B Chae

In contrast to many other genes containing a CpG island, the testis-specific H2B (TH2B) histone gene exhibits tissue-specific methylation patterns in correlation with gene activity. Characterization of the methylation patterns within a 20-kb segment containing the TH2A and TH2B genes in comparison with that in a somatic histone cluster revealed that: (i) the germ cell-specific unmethylated domain of the TH2A and TH2B genes is defined as a small region surrounding the CpG islands of the TH2A and TH2B genes and (ii) somatic histone genes are unmethylated in both liver and germ cells, like other genes containing CpG islands, whereas flanking sequences are methylated. Transfection of in vitro-methylated TH2B, somatic H2B, and mouse metallothionein I constructs into F9 embryonal carcinoma cells revealed that the CpG islands of the TH2A and TH2B genes were demethylated like those of the somatic H2A and H2B genes and the metallothionein I gene. The demethylation of those CpG islands became significantly inefficient at a high number of integrated copies and a high density of methylated CpG dinucleotides. In contrast, three sites in the somatic histone cluster, of which two sites are located in the long terminal repeat of an endogenous retrovirus-like sequence, were efficiently demethylated even at a high copy number and a high density of methylated CpG dinucleotides. These results suggest two possible mechanisms for demethylation in F9 cells and methylation of CpG islands of the TH2A and TH2B genes at the postblastula stage during embryogenesis.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S208-S208
Author(s):  
Samuel Beck ◽  
Junyeong Lee

Abstract Aging causes the global disorganization of nuclear chromatin architecture. In a normal young nucleus, silent heterochromatin is associated with the nuclear lamina layer underlying nuclear envelope, thus spatially separated from euchromatin at the nuclear center. Notably, aging causes the disruption of nuclear lamina and the decondensation of associated heterochromatin. However, it is not clearly understood how these changes of chromatin architectures contribute to age-related diseases. Through large-scale computational analyses, we present that CpG islands (CGIs) give important clues to answering this question. CGIs are DNA elements with high Cytosine-phosphate-Guanine dinucleotide frequencies. In human, about 60% of total genes contain CGIs at their promoters (CGI+ genes) and are broadly expressed throughout the body. The other 40% of genes that do not have CGIs (CGI- genes) exhibit tissue-restricted expression patterns. Our results demonstrate that, in normal young nuclei, only CGI- genes can reside within lamina-associated heterochromatin when transcriptionally inactive, while CGI+ genes associate with nuclear central euchromatin even when they are repressed. In parallel, we show that age-associated heterochromatin decondensation can specifically de-repress tissue-specific CGI- genes leading to their uncontrolled expressions. Our results further demonstrate that global misregulation of CGI- genes increases the noise in gene transcription that, in turn, causes the loss of cellular identities during aging. Taken together, our study establishes critical implication of CGI-mediated chromatin architecture in age-associated degenerative changes and loss of tissue homeostasis.


2020 ◽  
Vol 7 (2) ◽  
pp. 77 ◽  
Author(s):  
Xiao Wang ◽  
Haja N. Kadarmideen

DNA methylation of different gene components, including different exons and introns, or different lengths of exons and introns is associated with differences in gene expression. To investigate the methylation of porcine gene components associated with the boar taint (BT) trait, this study used reduced representation bisulfite sequencing (RRBS) data from nine porcine testis samples in three BT groups (low, medium and high BT). The results showed that the methylation levels of the first exons and first introns were lower than those of the other exons and introns. The first exons/introns of CpG island regions had even lower levels of methylation. A total of 123 differentially methylated promoters (DMPs), 194 differentially methylated exons (DMEs) and 402 differentially methylated introns (DMIs) were identified, of which 80 DMPs (DMP-CpGis), 112 DMEs (DME-CpGis) and 166 DMIs (DMI-CpGis) were discovered in CpG islands. Importantly, GPX1 contained one each of DMP, DME, DMI, DMP-CpGi, DME-CpGi and DMI-CpGi. Gene-GO term relationships and pathways analysis showed DMP-CpGi-related genes are mainly involved in methylation-related biological functions. In addition, gene–gene interaction networks consisted of nodes that were hypo-methylated GPX1, hypo-methylated APP, hypo-methylated ATOX1, hyper-methylated ADRB2, hyper-methylated RPS6KA1 and hyper-methylated PNMT. They could be used as candidate biomarkers for reducing boar taint in pigs, after further validation in large cohorts.


2020 ◽  
Vol 13 ◽  
pp. 251686572095968
Author(s):  
Allison H Rietze ◽  
Yvette P Conley ◽  
Dianxu Ren ◽  
Cindy M Anderson ◽  
James M Roberts ◽  
...  

Objective: We compared blood-based DNA methylation levels of endoglin ( ENG) and transforming growth factor beta receptor 2 ( TGFβR2) gene promoter regions between women with clinically-overt preeclampsia and women with uncomplicated, normotensive pregnancies. Methods: We used EpiTect Methyl II PCR Assays to evaluate DNA methylation of CpG islands located in promoter regions of ENG (CpG Island 114642) and TGFβR2 (CpG Island 110111). Preeclampsia was diagnosed based on blood pressure, protein, and uric acid criteria. N = 21 nulliparous preeclampsia case participants were 1:1 frequency matched to N = 21 nulliparous normotensive control participants on gestational age at sample collection (±2 weeks), smoking status, and labor status at sample collection. Methylation values were compared between case and control participant groups [( ENG subset: n = 20 (9 cases, 11 controls); TGFβR2 subset: n = 28 (15 cases, 13 controls)]. Results: The majority of the preeclampsia cases delivered at ⩾34 weeks’ gestation (83%). Average methylation levels for ENG ([M ± (SD)]; Case Participant Group = 6.54% ± 4.57 versus Control Participant group = 4.81% ± 5.08; P = .102) and TGFβR2 (Case Participant Group = 1.50% ± 1.37 vs Control Participant Group = 1.70% ± 1.40; P = .695) promoter CpG islands did not differ significantly between the participant groups. Removal of 2 extreme outliers in the ENG analytic subset revealed a trend between levels of ENG methylation and pregnancy outcome (Case Participant Group = 5.17% ± 2.16 vs Control Participant Group = 3.36% ± 1.73; P = .062). Conclusion: Additional epigenetic studies that include larger sample sizes, investigate preeclampsia subtypes, and capture methylation status of CpG island shores and shelves are needed to further inform us of the potential role that ENG and TGFβR2 DNA methylation plays in preeclampsia pathophysiology.


1993 ◽  
Vol 13 (9) ◽  
pp. 5538-5548 ◽  
Author(s):  
Y C Choi ◽  
C B Chae

In contrast to many other genes containing a CpG island, the testis-specific H2B (TH2B) histone gene exhibits tissue-specific methylation patterns in correlation with gene activity. Characterization of the methylation patterns within a 20-kb segment containing the TH2A and TH2B genes in comparison with that in a somatic histone cluster revealed that: (i) the germ cell-specific unmethylated domain of the TH2A and TH2B genes is defined as a small region surrounding the CpG islands of the TH2A and TH2B genes and (ii) somatic histone genes are unmethylated in both liver and germ cells, like other genes containing CpG islands, whereas flanking sequences are methylated. Transfection of in vitro-methylated TH2B, somatic H2B, and mouse metallothionein I constructs into F9 embryonal carcinoma cells revealed that the CpG islands of the TH2A and TH2B genes were demethylated like those of the somatic H2A and H2B genes and the metallothionein I gene. The demethylation of those CpG islands became significantly inefficient at a high number of integrated copies and a high density of methylated CpG dinucleotides. In contrast, three sites in the somatic histone cluster, of which two sites are located in the long terminal repeat of an endogenous retrovirus-like sequence, were efficiently demethylated even at a high copy number and a high density of methylated CpG dinucleotides. These results suggest two possible mechanisms for demethylation in F9 cells and methylation of CpG islands of the TH2A and TH2B genes at the postblastula stage during embryogenesis.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Ruiyi Lin ◽  
Weimin Lin ◽  
Shiye Zhou ◽  
Qiaohui Chen ◽  
Jiahua Pan ◽  
...  

Microphthalmia-associated transcription factor (MITF) is a key regulator for the development and function of melanocytes in skin, eye, and plumage pigmentations. Thus, the MITF was selected as a candidate gene associated with plumage coloration in ducks. This study analyzed the mRNA expression, promoter methylation, and polymorphisms in the MITF gene in ducks with different plumage colors (Putian Black, Putian White, Liancheng White, and Longsheng Jade-green). No expression of the MITF melanin-specific isoform (MITF-M) was detected in white feather bulbs. By contrast, the mRNA expression levels of MITF-M were high in black feather bulbs. Bioinformatics analysis showed that two CpG islands were present in the promoter region of the MITF gene. The methylation level of the second CpG island was significantly lower in black feather bulbs than in white feather bulbs. However, the methylation level of the first CpG island was not different among the feather bulbs with various colors except Liancheng White feather bulbs. The methylation status of the whole CpG island significantly and negatively correlated with the mRNA expression of MITF-M (P<0.05). Furthermore, four novel SNPs (single nucleotide polymorphisms) were identified in the 5′UTR, exon 4, intron 7, and intron 8 of the MITF gene. Allele T in g.39807T>G and allele G in g.40862G>A were the predominant alleles only found in Putian White, whereas the variant A allele in g.32813G>A exhibited a high allele frequency in Liancheng White. Collectively, these results contributed to the understanding of the function of the MITF gene in duck plumage coloration.


2019 ◽  
Vol 35 (23) ◽  
pp. 4867-4870
Author(s):  
Chengyu Liu ◽  
Yu-Chen Liu ◽  
Hsien-Da Huang ◽  
Wei Wang

Abstract Motivation In recent years, multiple circular RNAs (circRNA) biogenesis mechanisms have been discovered. Although each reported mechanism has been experimentally verified in different circRNAs, no single biogenesis mechanism has been proposed that can universally explain the biogenesis of all tens of thousands of discovered circRNAs. Under the hypothesis that human circRNAs can be categorized according to different biogenesis mechanisms, we designed a contextual regression model trained to predict the formation of circular RNA from a random genomic locus on human genome, with potential biogenesis factors of circular RNA as the features of the training data. Results After achieving high prediction accuracy, we found through the feature extraction technique that the examined human circRNAs can be categorized into seven subgroups, according to the presence of the following sequence features: RNA editing sites, simple repeat sequences, self-chains, RNA binding protein binding sites and CpG islands within the flanking regions of the circular RNA back-spliced junction sites. These results support all of the previously reported biogenesis mechanisms of circRNA and solidify the idea that multiple biogenesis mechanisms co-exist for different subset of human circRNAs. Furthermore, we uncover a potential new links between circRNA biogenesis and flanking CpG island. We have also identified RNA binding proteins putatively correlated with circRNA biogenesis. Availability and implementation Scripts and tutorial are available at http://wanglab.ucsd.edu/star/circRNA. This program is under GNU General Public License v3.0. Supplementary information Supplementary data are available at Bioinformatics online.


2008 ◽  
Vol 82 (16) ◽  
pp. 7818-7827 ◽  
Author(s):  
Filip Šenigl ◽  
Jiří Plachý ◽  
Jiří Hejnar

ABSTRACT Unmethylated CpG islands are known to keep adjacent promoters transcriptionally active. In the CpG island adjacent to the adenosine phosphoribosyltransferase gene, the protection against transcriptional silencing can be attributed to the short CpG-rich core element containing Sp1 binding sites. We report here the insertion of this CpG island core element, IE, into the long terminal repeat of a retroviral vector derived from Rous sarcoma virus, which normally suffers from progressive transcriptional silencing in mammalian cells. IE insertion into a specific position between enhancer and promoter sequences led to efficient protection of the integrated vector from silencing and gradual CpG methylation in rodent and human cells. Individual cell clones with IE-modified reporter vectors display high levels of reporter expression for a sustained period and without substantial variegation in the cell culture. The presence of Sp1 binding sites is important for the protective effect of IE, but at least some part of the entire antisilencing capacity is maintained in IE with mutated Sp1 sites. We suggest that this strategy of antisilencing protection by the CpG island core element may prove generally useful in retroviral vectors.


Sign in / Sign up

Export Citation Format

Share Document