Reduced oxygenation but not fibrosis defined by functional magnetic resonance imaging predicts the long-term progression of chronic kidney disease
Abstract Background Although chronic hypoxia and fibrosis may be a key to the progression of chronic kidney disease (CKD), a noninvasive means of measuring these variables is not yet available. Here, using blood oxygen level–dependent (BOLD) and diffusion-weighted (DW) magnetic resonance imaging (MRI), we assessed changes in renal tissue oxygenation and fibrosis, respectively, and evaluated their correlation with prognosis for renal function. Methods The study was conducted under a single-center, longitudinal, retrospective observational design. We examined the prognostic significance of T2* values of BOLD-MRI and apparent diffusion coefficient (ADC) values on DW-MRI and other clinical parameters. The rate of decline in estimated glomerular filtration rate (eGFR) was calculated by linear regression analysis using changes in eGFR during the observation period. Results A total of 91 patients were enrolled, with a mean age of 55.8 ± 15.6 years. Among patients, 51 (56.0%) were males and 38 (41.8%) had diabetes mellitus. The mean eGFR was 49.2 ± 28.9 mL/min/1.73 m2 and the mean observation period was 5.13 years. ADC values of DW-MRI but not T2* values of BOLD-MRI were well correlated with eGFR at the initial time point. The mean annual rate of decline in eGFR during the 5-year observation period was −1.92 ± 3.00 mL/min/1.73 m2. On multiple linear regression analysis, the rate of decline in eGFR was significantly correlated with eGFR at the start point, period average amount of proteinuria and T2* values, but not with ADC values (t = 2.980, P = 0.004). Conclusions Reduced oxygenation as determined by low T2* values on BOLD-MRI is a clinically useful marker of CKD progression.