scholarly journals DDIS-03. DEVELOPMENT OF A NOVEL CLASS OF cGAS AGONISTS TO TRIGGER STING PATHWAY-DEPENDENT INNATE IMMUNE RESPONSES AGAINST GLIOBLASTOMA

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi65-vi65
Author(s):  
Alexander Stegh

Abstract The Stimulator of Interferon Genes (STING) pathway represents a major innate immune sensing mechanism for tumor-derived DNA. Modified cyclic dinucleotides (CDNs) that mimic the endogenous STING ligand cGAMP are currently being explored in patients with solid tumors that amenable to intratumoral delivery. Inadequate bioavailability and insufficient lipophilicity are limiting factors for clinical CDN development, in particular when consideration is given to systemic administration approaches. We have shown that the formulation of oligonucleotides into Spherical Nucleic Acid (SNA) nanostructures, i.e., the presentation of oligonucleotides at high density on the surface of nanoparticle cores, lead to biochemical and biological properties that are radically different from those of linear oligonucleotides. First-generation SNAs conjugated with TLR9-agonsitic DNA oligonculeotides (NCT03086278; solid cancers) and intravenously administered, brain-penetrant siRNA-based SNAs (NCT03020017, recurrent GBM) have recently entered clinical trials. Here, we report the development of a STING-agonistic immunotherapy by targeting cGAS, the sensor of cytosolic dsDNA upstream of STING, with SNAs presenting dsDNA at high surface density. The strategy of using SNAs exploits the ability of cGAS to raise STING responses by delivering dsDNA and inducing the catalytic production of endogenous CDNs. SNA nanostructures carrying a 45bp IFN-simulating dsDNA oligonucleotide, the most commonly used and widely characterized cGAS activator, potently activated the cGAS-STING pathway, as evidenced by increased IRF responses, elevated protein marker expression indicative of the activated M1 macrophage state, and enhanced expression of pro-inflammatory cytokines in macrophage cultures in vitro, and in intracranial isogenic GBM explants in vivo. Our use of SNAs addresses the challenges of nucleic acid delivery to intracranial tumor sites, exploits the binding of closely-spaced, neighboring dsDNA molecules on the SNA surface to enhance the formation of a dimeric cGAS:DNA complex, and establishes cGAS-agonistic SNAs as a novel class of immune-stimulatory modalities for triggering innate immune responses against tumor.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi104-vi105
Author(s):  
Akanksha Mahajan ◽  
Lisa Hurley ◽  
Serena Tommasini-Ghelfi ◽  
Corey Dussold ◽  
Alexander Stegh ◽  
...  

Abstract The Stimulator of Interferon Genes (STING) pathway represents a major innate immune sensing mechanism for tumor-derived DNA. Modified cyclic dinucleotides (CDNs) that mimic the endogenous STING ligand cGAMP are currently being explored in patients with solid tumors that are amenable to intratumoral delivery. Inadequate bioavailability and insufficient lipophilicity are limiting factors for clinical CDN development, in particular when consideration is given to systemic administration approaches. We have shown that the formulation of oligonucleotides into Spherical Nucleic Acid (SNA) nanostructures, i.e.,the presentation of oligonucleotides at high density on the surface of nanoparticle cores, lead to biochemical and biological properties that are radically different from those of linear oligonucleotides. First-generation brain-penetrant siRNA-based SNAs (NCT03020017, recurrent GBM) have recently completed early clinical trials. Here, we report the development of a STING-agonistic immunotherapy by targeting cGAS, the sensor of cytosolic dsDNA upstream of STING, with SNAs presenting dsDNA at high surface density. The strategy of using SNAs exploits the ability of cGAS to raise STING responses by delivering dsDNA and inducing the catalytic production of endogenous CDNs. SNA nanostructures carrying a 45bp IFN-simulating dsDNA oligonucleotide, the most commonly used and widely characterized cGAS activator, potently activated the cGAS-STING pathway in vitro and in vivo. In a poorly immunogenic and highly aggressive syngeneic mouse glioma model, in which tumours were well-established, only one dose of intranasal treatment with STING-SNAs decelerated tumour growth, improved survival and importantly, was well-tolerated. Our use of SNAs addresses the challenges of nucleic acid delivery to intracranial tumor sites via intranasal route, exploits the binding of dsDNA molecules on the SNA surface to enhance the formation of a dimeric cGAS:DNA complex and establishes cGAS-agonistic SNAs as a novel class of immune-stimulatory modalities for triggering innate immune responses against tumor.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7461
Author(s):  
Claire K. Holley ◽  
Edward Cedrone ◽  
Duncan Donohue ◽  
Barry W. Neun ◽  
Daniela Verthelyi ◽  
...  

Understanding, predicting, and minimizing the immunogenicity of peptide-based therapeutics are of paramount importance for ensuring the safety and efficacy of these products. The so-called anti-drug antibodies (ADA) may have various clinical consequences, including but not limited to the alteration in the product’s distribution, biological activity, and clearance profiles. The immunogenicity of biotherapeutics can be influenced by immunostimulation triggered by the presence of innate immune response modulating impurities (IIRMIs) inadvertently introduced during the manufacturing process. Herein, we evaluate the applicability of several in vitro assays (i.e., complement activation, leukocyte proliferation, and cytokine secretion) for the screening of innate immune responses induced by ten common IIRMIs (Bacillus subtilis flagellin, FSL-1, zymosan, ODN2006, poly(I:C) HMW, poly(I:C) LMW, CLO75, MDP, ODN2216, and Escherichia coli O111:B4 LPS), and a model biotherapeutic Forteo™ (teriparatide). Our study identifies cytokine secretion from healthy human donor peripheral blood mononuclear cells (PBMC) as a sensitive method for the in vitro monitoring of innate immune responses to individual IIRMIs and teriparatide (TP). We identify signature cytokines, evaluate both broad and narrow multiplex cytokine panels, and discuss how the assay logistics influence the performance of this in vitro assay.


2020 ◽  
Vol 11 ◽  
Author(s):  
Imran Ahmad ◽  
Araceli Valverde ◽  
Raza Ali Naqvi ◽  
Afsar R. Naqvi

Macrophages (Mφ) are immune cells that exhibit remarkable functional plasticity. Identification of novel endogenous factors that can regulate plasticity and innate immune functions of Mφ will unravel new strategies to curb immune-related diseases. Long non-coding RNAs (lncRNAs) are a class of endogenous, non-protein coding, regulatory RNAs that are increasingly being associated with various cellular functions and diseases. Despite their ubiquity and abundance, lncRNA-mediated epigenetic regulation of Mφ polarization and innate immune functions is poorly studied. This study elucidates the regulatory role of lncRNAs in monocyte to Mφ differentiation, M1/M2 dichotomy and innate immune responses. Expression profiling of eighty-eight lncRNAs in monocytes and in vitro differentiated M2 Mφ identified seventeen differentially expressed lncRNAs. Based on fold-change and significance, we selected four differentially expressed lncRNAs viz., RN7SK, GAS5, IPW, and ZFAS1 to evaluate their functional impact. LncRNA knockdown was performed on day 3 M2 Mφ and the impact on polarization was assessed on day 7 by surface marker analysis. Knockdown of RN7SK and GAS5 showed downregulation of M2 surface markers (CD163, CD206, or Dectin) and concomitant increase in M1 markers (MHC II or CD23). RN7SK or GAS5 knockdown showed no significant impact on CD163, CD206, or CD23 transcripts. M1/M2 markers were not impacted by IPW or ZFAS1 knockdown. Functional regulation of antigen uptake/processing and phagocytosis, two central innate immune pathways, by candidate lncRNA was assessed in M1/M2 Mφ. Compared to scramble, enhanced antigen uptake and processing were observed in both M1/M2 Mφ transfected with siRNA targeting GAS5 and RN7SK but not IPW and ZFAS1. In addition, knockdown of RN7SK significantly augmented uptake of labelled E. coli in vitro by M1/M2 Mφ, while no significant difference was in GAS5 silencing cells. Together, our results highlight the instrumental role of lncRNA (RN7SK and GAS5)-mediated epigenetic regulation of macrophage differentiation, polarization, and innate immune functions.


2009 ◽  
Vol 77 (5) ◽  
pp. 1790-1797 ◽  
Author(s):  
Michael P. Nelson ◽  
Allison E. Metz ◽  
Shaoguang Li ◽  
Clifford A. Lowell ◽  
Chad Steele

ABSTRACT Src family tyrosine kinases (SFKs) phosphorylate immunotyrosine activation motifs in the cytoplasmic tail of multiple immunoreceptors, leading to the initiation of cellular effector functions, such as phagocytosis, reactive oxygen species production, and cytokine production. SFKs also play important roles in regulating these responses through the activation of immunotyrosine inhibitory motif-containing inhibitory receptors. As myeloid cells preferentially express the SFKs Hck, Fgr, and Lyn, we questioned the role of these kinases in innate immune responses to Pneumocystis murina. Increased phosphorylation of Hck was readily detectable in alveolar macrophages after stimulation with P. murina. We further observed decreased phosphorylation of Lyn on its C-terminal inhibitory tyrosine in P. murina-stimulated alveolar macrophages, indicating that SFKs were activated in alveolar macrophages in response to P. murina. Mice deficient in Hck, Fgr, and Lyn exhibited augmented clearance 3 and 7 days after intratracheal administration of P. murina, which correlated with elevated levels of interleukin 1β (IL-1β), IL-6, CXCL1/KC, CCL2/monocyte chemoattractant protein 1, and granulocyte colony-stimulating factor in lung homogenates and a dramatic increase in macrophage and neutrophil recruitment. Augmented P. murina clearance was also observed in Lyn−/− mice 3 days postchallenge, although the level was less than that observed in Hck−/− Fgr−/− Lyn−/− mice. A correlate to augmented clearance of P. murina in Hck−/− Fgr−/− Lyn−/− mice was a greater ability of alveolar macrophages from these mice to kill P. murina in vitro, suggesting that SFKs regulate the alveolar macrophage effector function against P. murina. Mice deficient in paired immunoglobulin receptor B (PIR-B), an inhibitory receptor activated by SFKs, did not exhibit enhanced inflammatory responsiveness to or clearance of P. murina. Our results suggest that SFKs regulate innate lung responses to P. murina in a PIR-B-independent manner.


2019 ◽  
Vol 166 (4) ◽  
pp. 289-295 ◽  
Author(s):  
Naoko Ohtani

Abstract Cellular senescence is an irreversible form of cell cycle arrest that can be induced by persistent DNA damage, and is well known to function as an important tumour suppression mechanism. Cellular senescence is detected in aged organisms; thus, it is also recognized as a hallmark of organismal ageing. Unlike apoptotic cells, senescent cells can survive for long periods of time. Recently, it has been shown that the late stage of senescent cells are capable of expressing a variety of secreted proteins such as cytokines, chemokines and proteases, and this condition is now known as senescence-associated secretory phenotype (SASP). These secreted factors are involved in myriad of physiological functions including tissue repair and clearance of damaged cells. Alternatively, these factors may promote detrimental effects, such as chronic inflammation or cancer progression, should the SASP persist. Recent scientific advances have indicated that innate immune responses, particularly involving the cGAS–STING pathway, trigger SASP induction. Therefore, developing a strategy to regulate SASP may provide scientific insights for the management of age-associated diseases and the implementation of healthy ageing in the future.


2020 ◽  
Vol 21 (6-8) ◽  
pp. 409-419
Author(s):  
Irfan Hussain ◽  
Nashaiman Pervaiz ◽  
Abbas Khan ◽  
Shoaib Saleem ◽  
Huma Shireen ◽  
...  

AbstractThe outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading fast worldwide. There is a pressing need to understand how the virus counteracts host innate immune responses. Deleterious clinical manifestations of coronaviruses have been associated with virus-induced direct dysregulation of innate immune responses occurring via viral macrodomains located within nonstructural protein-3 (Nsp3). However, no substantial information is available concerning the relationship of macrodomains to the unusually high pathogenicity of SARS-CoV-2. Here, we show that structural evolution of macrodomains may impart a critical role to the unique pathogenicity of SARS-CoV-2. Using sequence, structural, and phylogenetic analysis, we identify a specific set of historical substitutions that recapitulate the evolution of the macrodomains that counteract host immune response. These evolutionary substitutions may alter and reposition the secondary structural elements to create new intra-protein contacts and, thereby, may enhance the ability of SARS-CoV-2 to inhibit host immunity. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection‐driven epistasis in protein evolution. Our findings warrant further characterization of macrodomain-specific evolutionary substitutions in in vitro and in vivo models to determine their inhibitory effects on the host immune system.


2020 ◽  
Vol 11 ◽  
Author(s):  
Gaël Auray ◽  
Stephanie C. Talker ◽  
Irene Keller ◽  
Sylvie Python ◽  
Markus Gerber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document