scholarly journals ATIM-48 (LTBK-05). MULTIDIMENSIONAL PERSONALIZED RESPONSE ASSESSMENT TO MICROGLIA MODULATORS IN GLIOBLASTOMA BIOREACTORS

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi284-vi284
Author(s):  
Tala Shekarian ◽  
Anna Theresa Wachnowicz ◽  
Julia Flammer ◽  
Chiara Paganetti ◽  
Tomas Martins ◽  
...  

Abstract BACKGROUND Recently, strategies harnessing the non-neoplastic immune tumor microenvironment (iTME), consisting of macrophages and microglia (TAMs), as well as adaptive immune cells have been employed to treat glioblastoma (GBM). To evaluate the effect of local TAM-modulating therapies in combination with T-cell checkpoint inhibitors, we generated 3D GBM perfusion bioreactor cultures from patient-derived samples. We report patient- and tumor region specific responses to microglia modulators and checkpoint inhibitors using multidimensional fluorescent microscopy techniques, and multiplexed cytokine measurements, Subsequently, we aime at identifying responders versus non-responders as well as predictive markers of treatment response. METHODS Fresh, neuronavigated GBM biopsies from tumor center and periphery were placed into perfusion bioreactors and cultured for 7 days. Explants were treated with combinations of TAM and T-cell modulating drugs including anti-PD1 and anti-CD47 antibodies and their combination. Tissue was harvested for histology, and supernatants were processed for multiplexed cytokine analysis. Multidimensional CODEX technology analysis using a customized TAM centric 54 marker panel was implemented, and a map of individualized response criteria to specific immunotherapies developed. RESULTS Multiplex cytokine analysis showed a dominance of proinflammatory cytokines (CCL2, CCL3, CCL4 and PAI-1) in the periphery of the tumor at baseline. We further observed that the tumor periphery was more responsive to treatments confirming the efficacy of the treatment after tumor resection. Using CODEX, we identified specific cell types responding to the treatment and undergoing phenotypic changes. Moreover, dynamic shifting of T-cell checkpoint expression levels under treatment pointed to potential resistance mechanisms in a subset of tumors. Further, we identified region-specific cytokine release as a response to the treatment in a series of 8 patient-specific explant cultures. In summary, we present an in-depth profiling of the GBM-region specific iTME at baseline and document its dynamic response under innate/adaptive immune modulators using CODEX. CONCLUSION The proposed approach serves as a patient-tailored ex vivo “Clinical Trial” by stratifying the individual patient’s iTME response.

2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii61-iii61
Author(s):  
T Shekarian ◽  
A Wachnowicz ◽  
J Flammer ◽  
C Paganetti ◽  
T Martins ◽  
...  

Abstract BACKGROUND Recently, strategies harnessing the non-neoplastic, immune tumor microenvironment (iTME) consisting of myeloid-derived macrophages and yolk sac derived microglia (termed TAMs) as well as adaptive immune components have been employed to treat glioblastoma (GBM). To evaluate the effect of TAM-modulating therapies in combination with T-cell checkpoint inhibitor approaches, we generated 3D GBM bioreactor cultures from patient-derived samples. Here, we report patient-tailored, tumor region specific response assessment to microglia modulators and T-cell checkpoint inhibitors using multidimensional fluorescent microscopy techniques MATERIAL AND METHODS GBM tissue fragments from the tumor center and periphery were placed into perfusion bioreactors shortly after resection and cultured for up to 3 weeks. Control conditions included non-perfused cultures of the same tissue. Cultures were treated with combinations of TAM and T-cell modulating, FDA approved drugs including anti-PD1, anti-CTLA4 and anti-CD47 antibodies. Tissue was harvested for histology, RNA extraction, and supernatants were processed for multiplexed cytokine analysis. Multidimensional CODEX technology analysis using a customized TAM/microglia-centric 50 marker panel was implemented, and a map of individualized response criteria to specific immunotherapies developed. RESULTS We were able to cultivate viable GBM tissue with intact iTME. Tumor cell proliferation and invasion capacity were preserved for up to 3 weeks. Conventional immunohistochemistry confirmed the presence of TAMs and T cells. Treatment with immunomodulators resulted in a profound polarization shift of TAMs. Furthermore, cytokine analysis confirmed proinflammatory immune responses in most assessed samples. We present preliminary data of the CODEX analysis of our combinatorial immunotherapies in a series of 8 patient-specific explant samples. CONCLUSION GBM tissue could be incubated in the perfused 3D bioreactor model and kept viable for up to 21 days. The proposed model allows patient-tailored testing of immunomodulatory drugs by taking into account the patients individual iTME response. GBM tissue could be incubated in the perfused 3D bioreactor model and kept viable for up to 21 days. The proposed model allows patient-tailored testing of immunomodulatory drugs by taking into account the patients individual iTME response.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A245-A245
Author(s):  
Kathryn Appleton ◽  
Katy Lassahn ◽  
Ashley Elrod ◽  
Tessa DesRochers

BackgroundImmune checkpoint inhibitors (ICIs) have shifted the cancer treatment paradigm. Cancers such as melanoma and non-small cell lung cancer (NSCLC) demonstrate high tumor mutational burden and tumor neoantigen expression which renders them more responsive to checkpoint inhibitor blockade compared to other malignancies. Yet, 40–65% of metastatic melanoma patients do not have an initial response to ICI therapy1 and in NSCLC, PD-L1 expression, often a prerequisite for ICI treatment, does not definitively associate with ICI clinical response2. Mechanisms of resistance often result from aberrant interactions between tumor and immune cells. Development of pre-clinical models that mimic the complex interplay between cells within the tumor microenvironment in a patient-specific manner are critical for accurate ex vivo profiling of ICIs. To improve immunotherapy predictive testing, we present a 3D spheroid culture system for testing personalized ICI efficacy.MethodsCell lines co-cultured with T-cells from healthy donor peripheral blood mononuclear cells were used to optimize assay conditions and confirm ICI binding to target proteins. For ex vivo testing, primary melanoma or NSCLC tumor tissue from treatment naïve patients was dissociated and cultured as 3D spheroids using autologous immune cells to profile ICI target expression and sensitivity to treatment. ICI enhanced T-cell killing of tumor cells was quantified via lactate dehydrogenase release. Changes in IFNγ were used as a metric for ICI induced immune cell activation. Ratios and activation status of T-cell subsets was determined using flow cytometry. Fluorescent imaging was used to confirm the mechanism of tumor cell killing.ResultsICI binding to target proteins was measured across six ICIs, and no significant differences in concentration-dependent site occupancy within drug target classes was observed. However, differences in drug induced cytotoxicity across different tumor samples was detected even within the same drug target class. The immune composition of tumor samples that responded to ICIs displayed increased T-cell activation and increased IFNγ production. Furthermore, changes in PD-L1 and MHC-class I expression were detected which reflected ICI response. Finally, T-cell-dependent induction of tumor cell apoptosis was confirmed to be the observed mechanism of cytotoxicity within the 3D spheroid system.ConclusionsThis work demonstrates that differences in ICI induced cytotoxicity can accurately be detected using our ex vivo 3D spheroid platform. The differences in therapy sensitivity can be related back to cell composition and function to potentially predict patient-specific drug response. Future correlation to patient clinical outcomes will be necessary for true clinical applications.AcknowledgementsN/ATrial RegistrationN/AEthics ApprovalTissue for this study was procured from commercial vendors who maintain strict ethical compliance, including fully de-identified materials and stringent IRB and Ethics Committee compliance.ConsentN/AReferencesFenton SE, Sosman JA, Chandra S. Resistance mechanisms in melanoma to immuneoncologic therapy with checkpoint inhibitors. Cancer Drug Resistance. 2019;2(3):744–61.Chiang AC, Herbst RS. Frontline immunotherapy for NSCLC - the tale of the tail. Nat Rev Clin Oncol 2020;17(2):73–4.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi172-vi172
Author(s):  
Tala Shekarian ◽  
Ewelina Bartoszek-Kandler ◽  
Carl Zinner ◽  
Christian Schuerch ◽  
Gregor Hutter

Abstract The immune tumor microenvironment (iTME) of glioblastoma (GBM) contains microglial, macrophage, other myeloid cell populations and as adaptive immune cells. Recent therapeutic strategies for GBM aim at targeting iTME components to induce antitumoral immunity. A patient-tailored, ex vivo drug testing and response analysis platform would facilitate personalized therapy planning, provide insights into treatment-induced immune mechanisms in the iTME, and enable the discovery of biomarkers of response and resistance. Here, we generated patient-derived, live 3D GBM bioreactors from different tumor regions to assess iTME treatment responses to microglia modulators and immune checkpoint inhibitors. Intact GBM tissue specimens from the tumor center and periphery were cultured for 7 days in the presence or absence of anti-PD1, anti-CD47 antibodies or their combination. Tissues were analyzed by CODEX highly multiplexed microscopy using an immune-centered 54-marker panel, and changes in cytokine and chemokine levels in culture supernatants were investigated. A computational pipeline for integrative therapy response assessment was implemented. Explant cultures from n=8 IDH wt GBM were subjected to this integrative personalized analysis. Tissue integrity after 3D bioreactor cultures was comparable to tissue taken directly after surgery. FFPE CODEX workflow was feasible with adequate staining quality in bioreactor cultures. 850'000 single cells were segmented and clustered. Cellular composition between tumor center and the peripheral invasion zone differed significantly in immune phenotypes, cytokine profile and response to innate, adaptive or combinatorial local immunotherapies. Multiplexed cytokine analysis revealed IFNγ response signatures in a subset of center samples, whereas the peripheral invasion zone displayed a blunted cytokine response. This cytokine signature corresponded to cellular composition shifts within specific cellular neighborhoods. CD4 and CD8 T cells were invigorated and left their vascular niche. Our study demonstrates that local immunotherapies enable an active antitumoral immune response within the tumor center, and provides a multidimensional personalized framework for immunotherapy response assessment.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A268-A268
Author(s):  
Madison Milaszewski ◽  
James Loizeaux ◽  
Emily Tjon ◽  
Crystal Cabral ◽  
Tulin Dadali ◽  
...  

BackgroundEffective immune checkpoint blockade (ICB) treatment is dependent on T-cell recognition of patient-specific mutations (neoantigens). Empirical identification of neoantigens ex vivo has revealed shortcomings of in silico predictions.1 To better understand the impact of ICB treatment on T cell responses and differences between in silico and in vitro methods, neoantigen-specific T cell responses were evaluated in patients with non-small cell lung cancer undergoing first-line therapy with pembrolizumab ± chemotherapy.MethodsTumor and whole blood samples were collected from 14 patients prior to and after immunotherapy; seven each in monotherapy and combination therapy cohorts. The ex vivo ATLAS™ platform was used to profile neoantigen-specific T-cell responses. Patient-specific tumor mutations identified by next-generation sequencing (NGS) were expressed individually as ATLAS clones, processed patient-specific autologous antigen presenting cells, and presented to their T cells in vitro. ATLAS-verified antigens were compared with epitope predictions made using algorithms.ResultsOn average, 150 (range 37–339) non-synonymous mutations were identified. Pre-treatment, ATLAS identified T cell responses to a median of 15% (9–25%) of mutations, with nearly equal proportions of neoantigens (8%, 5–15%) and Inhibigens™, targets of suppressive T cell responses (8%, 3–13%). The combination therapy cohort had more confirmed neoantigens (46, 20–103) than the monotherapy cohort (7, 6–79). After treatment, the median ratio of CD4:CD8 T cells doubled in the monotherapy but not combination cohort (1.2 to 2.4 v. 1.6 to 1.3). Upon non-specific stimulation, T cells from patients on combination therapy expanded poorly relative to monotherapy (24 v. 65-fold, p = 0.014); no significant differences were observed pre-treatment (22 v. 18-fold, p = 0.1578). Post-treatment, the median number of CD8 neoantigens increased in the combination therapy cohort (11 to 15) but in monotherapy were mostly unchanged (6 to 7). Across timepoints, 36% of ATLAS-identified responses overlapped. In silico analysis resulted in 1,895 predicted epitopes among 961 total mutations; among those, 30% were confirmed with ATLAS, although nearly half were Inhibigens, which could not be predicted. Moreover, 50% of confirmed neoantigens were missed by in silico prediction.ConclusionsMonotherapy and combination therapy had differential effects on CD4:CD8 T cell ratios and their non-specific expansion. A greater proportion of neoantigens was identified than previously reported in studies employing in silico predictions prior to empirical verification.2 Overlap between confirmed antigens and in silico prediction was observed, but in silico prediction continued to have a large false negative rate and could not characterize Inhibigens.AcknowledgementsWe would like to acknowledge and thank the patients and their families for participating in this study.ReferencesLam H, McNeil LK, Starobinets H, DeVault VL, Cohen RB, Twardowski P, Johnson ML, Gillison ML, Stein MN, Vaishampayan UN, DeCillis AP, Foti JJ, Vemulapalli V, Tjon E, Ferber K, DeOliveira DB, Broom W, Agnihotri P, Jaffee EM, Wong KK, Drake CG, Carroll PM, Davis TA, Flechtner JB. An empirical antigen selection method identifies neoantigens that either elicit broad antitumor T-cell responses or drive tumor growth. Cancer Discov 2021;11(3):696–713. doi: 10.1158/2159- 8290.CD-20-0377. Epub 2021 January 27. PMID: 33504579. Rosenberg SA. Immersion in the search for effective cancer immunotherapies. Mol Med 27,63(2021). https://doi.org/10.1186/s10020-021-00321-3


2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. The importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented in mice. Recently, some groups have investigated the survival of effector/memory T cells in the human BM. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown.Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV- and CMV+ groups.Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8+ T cells was reduced. In addition, the frequency of B cells and CD4+ T cells positively correlated with BMI in the BM of CMV- persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons.Conclusion. Our work suggests that, in addition to aging and CMV, obesity may represent an additional risk factor for immunosenescence in adaptive immune cells. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. Recently, the importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown. Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV - and CMV + groups. Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8 + T cells was reduced. In addition, the frequency of B cells and CD4 + T cells positively correlated with BMI in the BM of CMV - persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons. Conclusion. Our work suggests that obesity may represent an independent risk factor supporting immunosenescence, in addition to aging and CMV. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A13.1-A13
Author(s):  
LK Klauer ◽  
O Schutti ◽  
S Ugur ◽  
F Doraneh-Gard ◽  
N Rogers ◽  
...  

BackgroundMyeloid leukaemic blasts can be converted into leukaemia derived dendritic cells (DCleu) with blastmodulatory Kit-I and Kit-M, which have the competence to regularly activate T and immunoreactive cells to gain anti-leukaemic activity or rather cytotoxicity. As innate and adaptive immune responses are notably promoted by the cytokine interferon gamma (IFNy), we hypothesised that the IFNy secretion could be a suitable parameter to display DC/DCleu mediated immunologic activity and even anti-leukaemic cytotoxicity.Materials and MethodsDC/DCleu were generated from leukaemic WB with Kit-I (GM-CSF + OK-432) and Kit-M (GM-CSF + PGE1) and used to stimulate T cell enriched immunoreactive cells. Initiated anti-leukaemic cytotoxicity was investigated with a cytotoxicity fluorolysis assay (CTX). Initiated IFNy secretion of innate and adaptive immune cells (T cells, TCD4+ cells, TCD8+ cells, NKCD56+ cells, NKCD161+ cells, CIKCD56+ cells, CIKCD161+ cells and iNKT) was investigated with a cytokine secretion assay (CSA). In some cases IFNy production was additionally evaluated with an intracellular cytokine assay (ICA). Conclusively, the IFNy secretion of immunoreactive cells was correlated with the anti-leukaemic cytotoxicity.ResultsSignificant amounts of DC and DCleu as well as migratory DC and DCleu could be generated with Kit-I and Kit-M without induction of blast proliferation. T cell enriched immunoreactive cells stimulated with DC/DCleu showed an increased anti-leukaemic cytotoxicity and an increased IFNy secretion of T, NK and CIK cells compared to control. Both the CSA and ICA yielded comparable amounts of IFNy positive innate and adaptive immune cells. The correlation between the IFNy secretion of immunoreactive cells and the anti-leukaemic cytotoxicity showed a positive relationship in T cells, TCD4+ cells, TCD8+ cells and NKCD56+ cells.ConclusionsWe found blastmodulatory Kit-I and Kit-M competent to generate DC/DCleu from leukaemic WB. Stimulation of T cell enriched immunoreactive cells with DC/DCleu regularly resulted in an increased anti-leukaemic cytotoxicity and an increased IFNy dependent immunological activity of T, NK and CIK cells compared to control. Moreover the anti-leukaemic cytotoxicity positively correlated with the IFNy secretion in T cells, TCD4+ cells, TCD8+ cells, NKCD56+ cells. We therefore consider the IFNy secretion of innate and adaptive immune cells to be a suitable parameter to assess the efficacy of in vitro and potentially in vivo AML immunotherapy. The CSA in this regard proved to be a convenient and reproducible technique to detect and phenotypically characterise IFNy secreting cells of the innate and adaptive immune system.Disclosure InformationL.K. Klauer: None. O. Schutti: None. S. Ugur: None. F. Doraneh-Gard: None. N. Rogers: None. M. Weinmann: None. D. Krämer: None. A. Rank: None. C. Schmid: None. B. Eiz-Vesper: None. H.M. Schmetzer: None.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 9543-9543
Author(s):  
Rodabe Navroze Amaria ◽  
Cara L. Haymaker ◽  
Marie-Andree Forget ◽  
Roland Bassett ◽  
Janice N. Cormier ◽  
...  

9543 Background: TIL adoptive cell transfer (ACT) therapy can produce durable responses for MM pts although efficacy appears lower in the era of checkpoint inhibitors. Toxicities from HD-IL2, including sepsis physiology, limits widespread use of this regimen. Suppression of transferred TIL by either tumor cells or the tumor microenvironment could limit TIL responses. Pembro is known to promote T cell activation, thus, we evaluated the efficacy and safety of TIL with pembro with HD-IL2 versus LD-IL2. Methods: Pts with MM who had tumor harvested and cryopreserved TIL at MD Anderson with PS 0-1 and normal organ function were eligible. All pts received a standard LD regimen consisting of cyclophosphamide and fludarabine, followed by infusion of pooled ex-vivo expanded TIL and either HD-IL2 (Arm 1: 720,000 IU/kg IV q 8 hrs up to 15 doses) or LD-IL2 (Arm 2: 2 million IU SC for 14 d). Pts received pembro 200mg IV starting 21 d post T cell infusion every 3 wks for up to 2 yrs. Pts were randomized 1:1 based on stage and LDH. Paired blood and tumor biopsies were obtained prior to LD, prior to first and second dose of pembro and at time of progression. Results: A total of 36 pts were planned to enroll (18 in each arm); however, the protocol met pre-specified futility boundaries in Arm 1 which prompted early closure after treatment of 14 pts (7 in each Arm). Median age was 50 yrs, 6 were female, 8 had cutaneous melanoma, 2 mucosal, 2 uveal and 2 unknown primary. 86% were stage M1c, 14% M1D, 50% had LDH elevation. Median lines of prior therapy were 3 (range 1-6), including prior anti PD-1 in 13 pts. Best overall response was 1 PR (for 10 mos), 2 SD, 3 PD, 1 NE in Arm 1; 1 PR (ongoing over 36 mos), 1 SD, 5 PD in Arm 2. With median follow up of 9.2 mos, PFS was 3.9 mos for Arm 1 and 2.1 mos for Arm 2 (p = 0.99). Median OS was 9.7 mos for Arm 1 and 8.8 mos for Arm 2 (p = 0.71). Toxicity was similar in both Arms but with lower rates of grade 3 febrile neutropenia (57% vs. 71%) and shorter hospital stay (median 16 vs. 18 d) in Arm 2 vs. Arm 1. Conclusions: In a heavily treated pt population, TIL with pembro achieved low response rates. Use of LD-IL2 did not diminish efficacy and may be better tolerated than HD-IL2 for TIL ACT. Correlative studies are ongoing to determine mechanisms of treatment response and failure. Clinical trial information: NCT02500576.


2019 ◽  
Vol 26 (2) ◽  
pp. 229-241
Author(s):  
Deepa Rana Jamwal ◽  
Raji V Marati ◽  
Christy A Harrison ◽  
Monica T Midura-Kiela ◽  
Vanessa R Figliuolo Paz ◽  
...  

Abstract Background Inflammatory bowel disease (IBD) is a multifactorial disorder, with the innate and adaptive immune cells contributing to disease initiation and progression. However, the intricate cross-talk between immune cell lineages remains incompletely understood. The role of CD8+ T cells in IBD pathogenesis has been understudied, largely due to the lack of appropriate models. Methods We previously reported spontaneous colitis in mice with impaired TGFβ signaling due to dendritic cell–specific knockout of TGFbR2 (TGFβR2ΔDC). Here, we demonstrate that crossing TGFβR2ΔDC mice with a Rag1-/- background eliminates all symptoms of colitis and that adoptive transfer of unfractionated CD3+ splenocytes is sufficient to induce progressive colitis in Rag1-/-TGFβR2ΔDC mice. Results Both CD4+ and CD8+ T cells are required for the induction of colitis accompanied by activation of both T-cell lineages and DCs, increased expression of mucosal IFNγ, TNFα, IL6, IL1β, and IL12, and decreased frequencies of CD4+FoxP3+ regulatory T cells. Development of colitis required CD40L expression in CD4+ T cells, and the disease was partially ameliorated by IFNγ neutralization. Conclusions This novel model provides an important tool for studying IBD pathogenesis, in particular the complex interactions among innate and adaptive immune cells in a controlled fashion, and represents a valuable tool for preclinical evaluation of novel therapeutics.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3107-3107 ◽  
Author(s):  
Roger B. Cohen ◽  
Przemyslaw Twardowski ◽  
Melissa Lynne Johnson ◽  
Maura L. Gillison ◽  
Mark N. Stein ◽  
...  

3107 Background: Tumor-specific neoantigens provide personalized targets for immunotherapy. Vaccines against epitopes predicted by in silico approaches very rarely induce CD4+ and CD8+ ex vivo T cell responses regardless of formulation. ATLAS selects neoantigens for vaccine inclusion using ex vivo screening of all patient-specific mutations to identify pre-existing CD4+ or CD8+ T cell responses and to exclude Inhibigens, which are inhibitory peptides that suppress immunity and accelerate tumor progression. The Inhibigen burden correlates with patient outcomes in observational studies and rapid tumor progression in mouse models. Methods: GEN-009-101 is a phase 1/2a study testing safety, immunogenicity and clinical activity in immune responsive tumors. After next-generation tumor sequencing and ATLAS testing of autologous leukocytes, up to 20 stimulatory synthetic long peptides adjuvanted with poly-ICLC comprise each personalized vaccine. Eight vaccinated patients have been followed for sustained immunological responses and clinical outcomes. Results: The 40 doses given across patients have induced only mild local discomfort and no DLT. Vaccination has generated immune responses against 99% of administered peptides, with both CD8+ and CD4+ responses in ex vivo fluorospot assays. To date, no patients have developed recurrent disease. Broad immunity develops as early as Day 29 and is sustained for over 12 months. Immune response against individual peptides is correlated with peptide concentration (OR = 1.26, p≤0.0001) but not with other classifiers such as GRAVY index (Grand Average of Hydropathy), tumor type, injection site or sex. The Inhibigen burden prior to treatment again correlates with disease progression. Conclusions: GEN-009 identifies tumor specific immune targets from the individual patient’s tumor mutagens. Initial clinical data show that ATLAS antigen selection may be critical to the induction of broad, rapid and sustained immunity against tumor specific neoantigens. Clinical vaccination with PD-1 blockade is in process. Clinical trial information: NCT03633110 . [Table: see text]


Sign in / Sign up

Export Citation Format

Share Document