scholarly journals Intracranially injectable multi-siRNA nanomedicine for the inhibition of Glioma Stem Cells

Author(s):  
Cheripelil Abraham Manju ◽  
Kottarapat Jeena ◽  
Ranjith Ramachandran ◽  
Maneesh Manohar ◽  
Anna Mathew Ambily ◽  
...  

Abstract Background Nanoparticle siRNA-conjugates are promising clinical therapeutics as indicated by recent US-FDA approval. In glioma stem cells (GSC), multiple stemness associated genes were found aberrant. We report intracranially injectable, multi-gene targeted siRNA nanoparticle-gel (NPG) for the combinatorial silencing of three aberrant genes, thus inhibiting the tumorogenic potential of GSCs. Methods NPG loaded with siRNAs targeted against FAK, NOTCH-1, SOX-2 were prepared by the self-assembly of siRNAs with protamine–hyaluronic acid combination. Electron microscopy, DLS and agarose gel electrophoresis were used for the physicochemical characterisation. Cell transfection and gene-silencing efficiency were studied using human mesenchymal stem cells and rat C6 glioma derived GSCs. Neurosphere inhibition was tested in vitro using GSCs derived from C6 cell line and glioma patient samples. Patient-Derived-Xenograft model and orthotopic rat glioma model were used to test the effect of NPG on in vivo tumorigenicity. Results The siRNA nanoparticles with an average size ~ 250nm and ~ 95% loading efficiency showed cellular uptake in ~95.5% GSCs. Simultaneous gene-silencing of FAK, NOTCH-1, and SOX-2 led to the inhibition of neurosphere formation by GSCs, whereas normal stem cells remained unaffected and retained neuronal differentiation capability. GBM PDX models manifested significant impairment in the tumorigenic potential of NPG treated GSCs. Intracranial injection of NPG inhibited tumour growth in orthotopic rat brain tumour model. Conclusion Intracranially injectable n-siRNA nanoparticle-gel targeted to multiple stem-cell signalling impair glioma initiation capabilities of GSCs and inhibited tumour growth in vivo.

2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Zetao Chen ◽  
Yihong Chen ◽  
Yan Li ◽  
Weidong Lian ◽  
Kehong Zheng ◽  
...  

AbstractGlioma is one of the most lethal cancers with highly vascularized networks and growing evidences have identified glioma stem cells (GSCs) to account for excessive angiogenesis in glioma. Aberrant expression of paired-related homeobox1 (Prrx1) has been functionally associated with cancer stem cells including GSCs. In this study, Prrx1 was found to be markedly upregulated in glioma specimens and elevated Prrx1 expression was inversely correlated with prognosis of glioma patients. Prrx1 potentiated stemness acquisition in non-stem tumor cells (NSTCs) and stemness maintenance in GSCs, accompanied with increased expression of stemness markers such as SOX2. Prrx1 also promoted glioma angiogenesis by upregulating proangiogenic factors such as VEGF. Consistently, silencing Prrx1 markedly inhibited glioma proliferation, stemness, and angiogenesis in vivo. Using a combination of subcellular proteomics and in vitro analyses, we revealed that Prrx1 directly bound to the promoter regions of TGF-β1 gene, upregulated TGF-β1 expression, and ultimately activated the TGF-β/smad pathway. Silencing TGF-β1 mitigated the malignant behaviors induced by Prrx1. Activation of this pathway cooperates with Prrx1 to upregulate the expression of stemness-related genes and proangiogenic factors. In summary, our findings revealed that Prrx1/TGF-β/smad signal axis exerted a critical role in glioma stemness and angiogeneis. Disrupting the function of this signal axis might represent a new therapeutic strategy in glioma patients.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 707-707
Author(s):  
Jung-Hyun Kim ◽  
Liping Li ◽  
Zixin Zhang ◽  
Katharina Hayer ◽  
Lingling Xian ◽  
...  

Abstract Introduction: Despite advances in therapy for B-cell acute lymphoblastic leukemia (B-ALL), relapsed disease remains the leading cause of death in children with cancer. The gene encoding the High Mobility Group A1 (HMGA1) chromatin regulator is highly expressed in stem cells and diverse malignancies where high levels portend poor outcomes. We discovered that transgenic mice misexpressing Hmga1 in lymphoid cells develop leukemic transformation by amplifying transcriptional networks involved in stem cell function, proliferation, and inflammation (Hillion et al, Cancer Res 2008, Schuldenfrei et al, BMC Genomics 2011, Xian et al, Nature Commun 2017). In pediatric B-ALL (pB-ALL), HMGA1 is overexpressed with highest levels in blasts from early relapse (Roy et al, Leuk Lymphoma 2013). Together, these findings suggest that HMGA1 is required for leukemogenesis and drives relapse through epigenetic reprogramming. We therefore sought to: 1) test the hypothesis that HMGA1 is required for leukemogenesis and relapse in pB-ALL, and, 2) elucidate targetable mechanisms mediated by HMGA1. Methods: To elucidate the function of HMGA1 and downstream targets, we employed CRISPR/Cas9 gene inactivation and lentiviral-mediated gene silencing via delivery of short hairpin RNA (shRNA) targeting 2 sequences per gene in cell lines from relapsed pB-ALL, including REH, which harbor the TEL-AML1 fusion, and 697, which harbor the E2A-PBX1 fusion. We assessed leukemia phenotypes in vitro and leukemic engraftment in vivo. To dissect molecular mechanisms, we performed RNA sequencing (RNAseq) and applied in silico pathway analysis. To validate these pathways in human pB-ALL, we assessed gene expression and clinical outcomes in independent cohorts. The Broad Institute Connectivity Map (CMAP) was applied to identify drugs to target HMGA1 networks. Results: HMGA1 is overexpressed in pB-ALL in independent cohorts with highest levels at relapse. Decreasing HMGA1 expression via CRISPR/Cas9 inactivation or shRNA-mediated gene silencing in relapsed pB-ALL cell lines (REH, 697) disrupts proliferation, decreases the frequency of cells in S phase concurrent with increases in G0/G1, enhances apoptosis, and impairs clonogenicity. To assess HMGA1 function in vivo, we compared leukemogenesis following tail vein injection of pB-ALL cell lines with or without HMGA1 depletion in immunodeficient mice (NOD/SCID/IL2 receptor gamma null). Survival was prolonged in mice injected with either pB-ALL cell line (REH, 697) after HMGA1 depletion. Further, leukemic cells that ultimately engraft show increased HMGA1 expression relative to the pool of injected cells with HMGA1 silencing, suggesting that escape from HMGA1 silencing was required for engraftment. RNAseq revealed transcriptional networks governed by HMGA1 that regulate proliferation (G2M checkpoint, E2F), RAS/ERK signaling, hematopoietic stem cells, and ETV5 (ETS variant 5 transcription factor) targets. Given its association with aggressive ALL harboring the BCR-ABL fusion, we focused on the ETV5 gene. CRISPR/Cas9 inactivation or gene silencing of ETV5 in relapsed pB-ALL cell lines (REH, 697) decreases proliferation and clonogenicity in vitro, while delaying leukemogenesis in vivo. Further, restoring ETV5 expression in pB-ALL cell lines with HMGA1 silencing partially rescues anti-leukemogenic effects of HMGA1 depletion. Mechanistically, HMGA1 binds to AT-rich regions within the ETV5 promoter (-0.7 kb and -0.2 kb) and recruits active histone marks (H3K27Ac, H3K4me3, H3K4me1) to induce ETV5. Epigenetic drugs predicted to target HMGA1-ETV5 networks synergize with HMGA1 silencing in cytotoxicity assays with pB-ALL cell lines. Most importantly, HMGA1 and ETV5 are co-expressed and up-regulated in primary blasts from children with pB-ALL with highest levels at relapse, thus underscoring the significance of this pathway in relapsed pediatric B-ALL. Conclusions: We discovered a previously unknown epigenetic program whereby HMGA1 up-regulates ETV5 networks by binding to chromatin and recruiting active histone marks to the ETV5 promoter. Both HMGA1 and ETV5 are up-regulated at relapse. Finally, the HMGA1-ETV5 axis can be targeted by epigenetic drugs (HDAC inhibitors) that synergize with HMGA1 depletion. Our findings reveal the HMGA1-ETV5 axis as a key molecular switch in relapsed pB-ALL and rational therapeutic target to treat or prevent relapse. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


EBioMedicine ◽  
2021 ◽  
Vol 74 ◽  
pp. 103752
Author(s):  
Sara G. Pelaz ◽  
Myriam Jaraíz-Rodríguez ◽  
Andrea Álvarez-Vázquez ◽  
Rocío Talaverón ◽  
Laura García-Vicente ◽  
...  

2020 ◽  
Author(s):  
Jian Zang ◽  
Min-hua Zheng ◽  
Xiu-li Cao ◽  
Yi-zhe Zhang ◽  
Yu-fei Zhang ◽  
...  

Abstract BackgroundGlioma stem cells (GSCs) are glioma cells with stemness and are responsible for a variety of malignant behaviors of glioma. Evidence has shown that signals from tumor microenvironment (TME) enhance stemness of glioma cells, but the identity of the signaling molecules and underlying mechanisms have been incompletely elucidated.MethodsHuman samples and glioma cell lines were cultured in vitro to determine the effects of viral infection by sphere formation, qRT-PCR, Western blot, FACS and immunofluorescence; for in vivo analysis, mice subcutaneous tumor model was carried; while bioinformatics analysis and qRT-PCR were applied for further mechanistic studies.ResultsIn this study, we show that infection of patient-derived glioma cells with adenovirus (ADV) increases the formation of tumor spheres. ADV infection upregulated stem cell markers, and the resultant tumor spheres held the capacities of self-renewal and multi-lineage differentiation, and had stronger potential to form xenograft tumors in immune-compromised mice. ADV promoted GSC formation likely via TLR9, because TLR9 was upregulated after ADV infection, and knockdown of TLR9 reduced ADV-induced GSCs. Consistently, MYD88, as well as total STAT3 and phosphorylated (p-)STAT3, were also upregulated in ADV-induced GSCs. Knockdown of MYD88 or pharmaceutical inhibition of STAT3 attenuated stemness of ADV-induced GSCs. Moreover, we found that ADV infection upregulated lncRNA NEAT1, which is downstream to TLRs and play important roles in cancer stem cells via multiple mechanisms including strengthening STAT3 signaling. Indeed, knockdown of NEAT1 impaired stemness of ADV-induced GSCs. Lastly, we show that HMGB1, a damage associated molecular pattern (DAMP) that also triggers TLR signaling, upregulated stemness markers in glioma cells.ConclusionsIn summary, our data indicate that ADV, which has been developed as vectors for gene therapy and oncolytic virus, promotes the formation of GSCs via TLR9/NEAT1/STAT3 signaling.


2019 ◽  
Vol 18 ◽  
pp. 153601211987089 ◽  
Author(s):  
Po-An Tai ◽  
Yen-Lin Liu ◽  
Ya-Ting Wen ◽  
Chien-Min Lin ◽  
Thanh-Tuan Huynh ◽  
...  

Glioblastoma multiforme represents one of the deadliest brain tumor types, manifested by a high rate of recurrence and poor prognosis. The presence of glioma stem cells (GSCs) can repopulate the tumor posttreatment and resist therapeutics. A better understanding of GSC biology is essential for developing more effective interventions. We established a CD133 promoter-driven dual reporter, expressing green fluorescent protein (GFP) and firefly luciferase (CD133-LG), capable for in vitro and in vivo imaging of CD133+ GSCs. We first demonstrated the reporter enabled in vitro analyses of GSCs. DBTRG-05MG (Denver Brain Tumor Research Group 05) carrying CD133-LG (DBTRG-05MG-CD133-LG) system reported increased GFP/luciferase activities in neurospheres. Additionally, we identified and isolated CD133+/GFP+ cells with increased tumorigenic properties, stemness markers, Notch1, β-catenin, and Bruton’s tyrosine kinase (Btk). Furthermore, prolonged temozolomide (TMZ) treatment enriched GSCs (reflected by increased percentage of CD133+ cells). Subsequently, Btk inhibitor, ibrutinib, suppressed GSC generation and stemness markers. Finally, we demonstrated real-time evaluation of anti-GSC function of ibrutinib in vivo with TMZ-enriched GSCs. Tumorigenesis was noninvasively monitored by bioluminescence imaging and mice that received ibrutinib showed a significantly lower tumor burden, indicating ibrutinib as a potential GSC inhibitor. In conclusion, we established a dual optical imaging system which enables the identification of CD133+ GSCs and screening for anti-GSC drugs.


2020 ◽  
Vol 11 (9) ◽  
pp. 2421-2430
Author(s):  
Geng Guo ◽  
Jing Liu ◽  
Yeqing Ren ◽  
Xinggang Mao ◽  
Yining Hao ◽  
...  
Keyword(s):  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii196-ii196
Author(s):  
Marine Potez ◽  
Jongmyung Kim ◽  
Chunhua She ◽  
Neelkamal Chaudhary ◽  
James Liu

Abstract Glioblastoma (GBM) is the most aggressive primary brain tumor with high mortality rates and resistance to conventional therapy. Glioma stem cells (GSCs) comprise a sub-population of glioma tumor cells with the ability of self-renewal and tumor recapitulation, and may be responsible for GBM’s treatment resistant properties. Identification of surface receptors that are novel and specific to GSCs may be the key to the development of effective therapeutic strategies. We have selected a GSC specific targeting peptide isolated through in vitro and in vivo phage display biopanning. This screening technique allowed us to determine a peptide (GBM-IC2) which binds specifically to GSCs in vitro, and to GBM tissue in vivo. Although this screening process allows for isolation of cell specific targeting peptides, it does so without identification of the cellular binding partner. Given the specificity of the peptide, identification of the cellular receptor may allow for discovery of novel markers to identify GSCs. To identify the peptide binding partner of GBM-IC2, the biotinylated peptide was incubated with GSC protein lysate. The peptide, along with its binding partner, was isolated using streptavidin agarose resin. The binding partner protein was then identified using mass spectroscopy. This revealed N-cadherin (CDH2) as a potential binding partner for the GBM-IC2 peptide. GBM-IC2 demonstrated specificity for targeting CDH2 compared to control peptide using ELISA. Lentiviral induced overexpression of CDH2 in HEK293 cells allowed for GBM-IC2 peptide binding. Competition assay was performed by applying anti-CDH2 antibody to GBM-IC2 peptide and GSCs in culture. Application of anti-CDH2 antibody decreased peptide binding to GSCs, confirming CDH2 as the binding partner for GBM-IC2. These results demonstrate that cell specific targeting peptides isolated through phage display may lead to the isolation of novel cell specific proteins through immunoprecipitation isolation and mass spectroscopy analysis.


2021 ◽  
Vol 22 (21) ◽  
pp. 11633
Author(s):  
Masashi Okada ◽  
Shuhei Suzuki ◽  
Keita Togashi ◽  
Asuka Sugai ◽  
Masahiro Yamamoto ◽  
...  

Glioblastoma (GBM) is one of the deadliest of all human cancers. Developing therapies targeting GBM cancer stem cells or glioma stem cells (GSCs), which are deemed responsible for the malignancy of GBM due to their therapy resistance and tumor-initiating capacity, is considered key to improving the dismal prognosis of GBM patients. In this study, we found that folate antagonists, such as methotrexate (MTX) and pemetrexed, are selectively cytotoxic to GSCs, but not to their differentiated counterparts, normal fibroblasts, or neural stem cells in vitro, and that the high sensitivity of GCSs to anti-folates may be due to the increased expression of RFC-1/SLC19A1, the reduced folate carrier that transports MTX into cells, in GSCs. Of note, in an in vivo serial transplantation model, MTX alone failed to exhibit anti-GSC effects but promoted the anti-GSC effects of CEP1347, an inducer of GSC differentiation. This suggests that folate metabolism, which plays an essential role specifically in GSCs, is a promising target of anti-GSC therapy, and that the combination of cytotoxic and differentiation therapies may be a novel and promising approach to effectively eliminate cancer stem cells.


Sign in / Sign up

Export Citation Format

Share Document