scholarly journals A review of neurotoxicities associated with immunotherapy and a framework for evaluation

2021 ◽  
Vol 3 (Supplement_5) ◽  
pp. v108-v120
Author(s):  
Leeann B Burton ◽  
Mahsa Eskian ◽  
Amanda C Guidon ◽  
Kerry L Reynolds

Abstract Immuno-oncology agents, including immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T (CAR-T) cell therapies, are increasing in use for a growing list of oncologic indications. While harnessing the immune system against cancer cells has a potent anti-tumor effect, it can also cause widespread autoimmune toxicities that limit therapeutic potential. Neurologic toxicities have unique presentations and can progress rapidly, necessitating prompt recognition. In this article, we review the spectrum of central and peripheral neurologic immune-related adverse events (irAEs) associated with ICI therapies, emphasizing a diagnostic framework that includes consideration of the therapy regimen, timing of symptom onset, presence of non-neurologic irAEs, pre-existing neurologic disease, and syndrome specific features. In addition, we review the immune effector cell-associated neurotoxicity syndrome (ICANS) associated with CAR-T cell therapy and address diagnostic challenges specific to patients with brain metastases. As immunotherapy use grows, so too will the number of patients affected by neurotoxicity. There is an urgent need to understand pathogenic mechanisms, predictors, and optimal treatments of these toxicities, so that we can manage them without sacrificing anti-tumor efficacy.

2021 ◽  
Vol 3 (3) ◽  
pp. 46-47
Author(s):  
Yuanzheng Liang ◽  

Chimeric antigen receptor (CAR) T-cell therapy has drawn the most attention ever in the treatment of hematologic malignancies due to its impressive efficacy in heavily pretreated patients. However, the use of CAR T-cell therapy has just started in the field of solid tumor. Till now, four CAR T-cell therapies have been approved in the world, and an increasing number of patients will receive this expensive treatment. Thus, we will briefly talk about the advances and challenges in the adventure of CAR T-cell therapy


Hematology ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 598-605
Author(s):  
Yun Choi ◽  
Catherine S. Diefenbach

Abstract The treatment of lymphomas has undergone a shift in the last few decades, from traditional cytotoxic chemotherapy toward immune-targeting agents that supplement or, in some cases, even supplant direct tumor killing with activation of antitumor systemic immunity. Since the introduction of the first known immunomodulatory modality, allogeneic hematopoietic cell transplantation, multiple immunotherapeutic approaches have been developed including monoclonal antibodies (mABs), antibody-drug conjugates, bispecific T-cell engagers, checkpoint inhibitors, small molecule inhibitors, chimeric antigen receptor (CAR) T-cell therapies, and vaccines. Many of these agents, either as monotherapies or as a component of a combination strategy, have shown impressive results, combining efficacy with tolerability. Immunotherapy ranging from mABs to checkpoint inhibitors and CAR T-cell therapy are now integrated into lymphoma treatment from the earliest lines of therapy to the relapsed and refractory setting for both Hodgkin (HL) and non-Hodgkin lymphoma (NHL). Although further studies are needed to improve our understanding of the unique side effects of immunomodulation, to determine the optimal sequence and combinations of these agent with targeted therapies and standard chemotherapy, and to identify predictive biomarkers, they clearly represent a growing list of treatment options for both HL and NHL and an important step on our road toward cure of these diseases.


2020 ◽  
Vol 12 ◽  
pp. 175883592096296
Author(s):  
Qing Cai ◽  
Mingzhi Zhang ◽  
Zhaoming Li

Chimeric antigen receptor (CAR) T-cell therapy is a rapidly developing method for adoptive immunotherapy of tumours in recent years. CAR T-cell therapies have demonstrated unprecedented efficacy in the treatment of patients with haematological malignancies. A 90% complete response (CR) rate has been reported in patients with advanced relapse or refractory acute lymphoblastic leukaemia, while >50% CR rates have been reported in cases of chronic lymphocytic leukaemia and partial B-cell lymphoma. Despite the high CR rates, a subset of the patients with complete remission still relapse. The mechanism of development of resistance is not clearly understood. Some patients have been reported to demonstrate antigen-positive relapse, whereas others show antigen-negative relapses. Patients who relapse following CAR T-cell therapy, have very poor prognosis and novel approaches to overcome resistance are required urgently. Herein, we have reviewed current literature and research that have investigated the strategies to overcome resistance to CAR T-cell therapy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3921-3921 ◽  
Author(s):  
Cesar Sommer ◽  
Hsin-Yuan Cheng ◽  
Yik Andy Yeung ◽  
Duy Nguyen ◽  
Janette Sutton ◽  
...  

Autologous chimeric antigen receptor (CAR) T cells have achieved unprecedented clinical responses in patients with B-cell leukemias, lymphomas and multiple myeloma, raising interest in using CAR T cell therapies in AML. These therapies are produced using a patient's own T cells, an approach that has inherent challenges, including requiring significant time for production, complex supply chain logistics, separate GMP manufacturing for each patient, and variability in performance of patient-derived cells. Given the rapid pace of disease progression combined with limitations associated with the autologous approach and treatment-induced lymphopenia, many patients with AML may not receive treatment. Allogeneic CAR T (AlloCAR T) cell therapies, which utilize cells from healthy donors, may provide greater convenience with readily available off-the-shelf CAR T cells on-demand, reliable product consistency, and accessibility at greater scale for more patients. To create an allogeneic product, the TRAC and CD52 genes are inactivated in CAR T cells using Transcription Activator-Like Effector Nuclease (TALEN®) technology. These genetic modifications are intended to minimize the risk of graft-versus-host disease and to confer resistance to ALLO-647, an anti-CD52 antibody that can be used as part of the conditioning regimen to deplete host alloreactive immune cells potentially leading to increased persistence and efficacy of the infused allogeneic cells. We have previously described the functional screening of a library of anti-FLT3 single-chain variable fragments (scFvs) and the identification of a lead FLT3 CAR with optimal activity against AML cells and featuring an off-switch activated by rituximab. Here we characterize ALLO-819, an allogeneic FLT3 CAR T cell product, for its antitumor efficacy and expansion in orthotopic models of human AML, cytotoxicity in the presence of soluble FLT3 (sFLT3), performance compared with previously described anti-FLT3 CARs and potential for off-target binding of the scFv to normal human tissues. To produce ALLO-819, T cells derived from healthy donors were activated and transduced with a lentiviral construct for expression of the lead anti-FLT3 CAR followed by efficient knockout of TRAC and CD52. ALLO-819 manufactured from multiple donors was insensitive to ALLO-647 (100 µg/mL) in in vitro assays, suggesting that it would avoid elimination by the lymphodepletion regimen. In orthotopic models of AML (MV4-11 and EOL-1), ALLO-819 exhibited dose-dependent expansion and cytotoxic activity, with peak CAR T cell levels corresponding to maximal antitumor efficacy. Intriguingly, ALLO-819 showed earlier and more robust peak expansion in mice engrafted with MV4-11 target cells, which express lower levels of the antigen relative to EOL-1 cells (n=2 donors). To further assess the potency of ALLO-819, multiple anti-FLT3 scFvs that had been described in previous reports were cloned into lentiviral constructs that were used to generate CAR T cells following the standard protocol. In these comparative studies, the ALLO-819 CAR displayed high transduction efficiency and superior performance across different donors. Furthermore, the effector function of ALLO-819 was equivalent to that observed in FLT3 CAR T cells with normal expression of TCR and CD52, indicating no effects of TALEN® treatment on CAR T cell activity. Plasma levels of sFLT3 are frequently increased in patients with AML and correlate with tumor burden, raising the possibility that sFLT3 may act as a decoy for FLT3 CAR T cells. To rule out an inhibitory effect of sFLT3 on ALLO-819, effector and target cells were cultured overnight in the presence of increasing concentrations of recombinant sFLT3. We found that ALLO-819 retained its killing properties even in the presence of supraphysiological concentrations of sFLT3 (1 µg/mL). To investigate the potential for off-target binding of the ALLO-819 CAR to human tissues, tissue cross-reactivity studies were conducted using a recombinant protein consisting of the extracellular domain of the CAR fused to human IgG Fc. Consistent with the limited expression pattern of FLT3 and indicative of the high specificity of the lead scFv, no appreciable membrane staining was detected in any of the 36 normal tissues tested (n=3 donors). Taken together, our results support clinical development of ALLO-819 as a novel and effective CAR T cell therapy for the treatment of AML. Disclosures Sommer: Allogene Therapeutics, Inc.: Employment, Equity Ownership. Cheng:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Yeung:Pfizer Inc.: Employment, Equity Ownership. Nguyen:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Sutton:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Melton:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Valton:Cellectis, Inc.: Employment, Equity Ownership. Poulsen:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Djuretic:Pfizer, Inc.: Employment, Equity Ownership. Van Blarcom:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Chaparro-Riggers:Pfizer, Inc.: Employment, Equity Ownership. Sasu:Allogene Therapeutics, Inc.: Employment, Equity Ownership.


2022 ◽  
Vol 10 (1) ◽  
pp. e003847
Author(s):  
Marc Wehrli ◽  
Kathleen Gallagher ◽  
Yi-Bin Chen ◽  
Mark B Leick ◽  
Steven L McAfee ◽  
...  

In addition to remarkable antitumor activity, chimeric antigen receptor (CAR) T-cell therapy is associated with acute toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Current treatment guidelines for CRS and ICANS include use of tocilizumab, a monoclonal antibody that blocks the interleukin (IL)-6 receptor, and corticosteroids. In patients with refractory CRS, use of several other agents as third-line therapy (including siltuximab, ruxolitinib, anakinra, dasatinib, and cyclophosphamide) has been reported on an anecdotal basis. At our institution, anakinra has become the standard treatment for the management of steroid-refractory ICANS with or without CRS, based on recent animal data demonstrating the role of IL-1 in the pathogenesis of ICANS/CRS. Here, we retrospectively analyzed clinical and laboratory parameters, including serum cytokines, in 14 patients at our center treated with anakinra for steroid-refractory ICANS with or without CRS after standard treatment with tisagenlecleucel (Kymriah) or axicabtagene ciloleucel (Yescarta) CD19-targeting CAR T. We observed statistically significant and rapid reductions in fever, inflammatory cytokines, and biomarkers associated with ICANS/CRS after anakinra treatment. With three daily subcutaneous doses, anakinra did not have a clear, clinically dramatic effect on neurotoxicity, and its use did not result in rapid tapering of corticosteroids; although neutropenia and thrombocytopenia were common at the time of anakinra dosing, there were no clear delays in hematopoietic recovery or infections that were directly attributable to anakinra. Anakinra may be useful adjunct to steroids and tocilizumab in the management of CRS and/or steroid-refractory ICANs resulting from CAR T-cell therapies, but prospective studies are needed to determine its efficacy in these settings.


Author(s):  
Aaron J Harrison ◽  
Xin Du ◽  
Bianca von Scheidt ◽  
Michael H Kershaw ◽  
Clare Y Slaney

Abstract Co-stimulation is a fundamental component of T cell biology and plays a key role in determining the quality of T cell proliferation, differentiation and memory formation. T cell-based immunotherapies, such as chimeric antigen receptor (CAR) T cell immunotherapy, are no exception. Solid tumours have largely been refractory to CAR T cell therapy owing to an immunosuppressive microenvironment which limits CAR T cell persistence and effector function. In order to eradicate solid cancers, increasingly sophisticated strategies are being developed to deliver these vital co-stimulatory signals to CAR T cells, often specifically within the tumour microenvironment. These include designing novel co-stimulatory domains within the CAR or other synthetic receptors, arming CAR T cells with cytokines or using CAR T cells in combination with agonist antibodies. This review discusses the evolving role of co-stimulation in CAR T cell therapies and the strategies employed to target co-stimulatory pathways in CAR T cells, with a view to improve responses in solid tumours.


Author(s):  
Khaled A. Al-Utaibi ◽  
Alessandro Nutini ◽  
Ayesha Sohail ◽  
Robia Arif ◽  
Sümeyye Tunc ◽  
...  

Background: CAR-T cells are chimeric antigen receptor (CAR)-T cells; they are target-specific engineered cells on tumor cells and produce T cell-mediated antitumor responses. CAR-T cell therapy is the “first-line” therapy in immunotherapy for the treatment of highly clonal neoplasms such as lymphoma and leukemia. This adoptive therapy is currently being studied and tested even in the case of solid tumors such as osteosarcoma since, precisely for this type of tumor, the use of immune checkpoint inhibitors remained disappointing. Although CAR-T is a promising therapeutic technique, there are therapeutic limits linked to the persistence of these cells and to the tumor’s immune escape. CAR-T cell engineering techniques are allowed to express interleukin IL-36, and seem to be much more efficient in antitumoral action. IL-36 is involved in the long-term antitumor action, allowing CAR-T cells to be more efficient in their antitumor action due to a “cross-talk” action between the “IL-36/dendritic cells” axis and the adaptive immunity. Methods: This analysis makes the model useful for evaluating cell dynamics in the case of tumor relapses or specific understanding of the action of CAR-T cells in certain types of tumor. The model proposed here seeks to quantify the action and interaction between the three fundamental elements of this antitumor activity induced by this type of adoptive immunotherapy: IL-36, “armored” CAR-T cells (i.e., engineered to produce IL-36) and the tumor cell population, focusing exclusively on the action of this interleukin and on the antitumor consequences of the so modified CAR-T cells. Mathematical model was developed and numerical simulations were carried out during this research. The development of the model with stability analysis by conditions of Routh–Hurwitz shows how IL-36 makes CAR-T cells more efficient and persistent over time and more effective in the antitumoral treatment, making therapy more effective against the “solid tumor”. Findings: Primary malignant bone tumors are quite rare (about 3% of all tumors) and the vast majority consist of osteosarcomas and Ewing’s sarcoma and, approximately, the 20% of patients undergo metastasis situations that is the most likely cause of death. Interpretation: In bone tumor like osteosarcoma, there is a variation of the cellular mechanical characteristics that can influence the efficacy of chemotherapy and increase the metastatic capacity; an approach related to adoptive immunotherapy with CAR-T cells may be a possible solution because this type of therapy is not influenced by the biomechanics of cancer cells which show peculiar characteristics.


2020 ◽  
Vol 12 ◽  
pp. 175883592096657
Author(s):  
Weijia Wu ◽  
Yan Huo ◽  
Xueying Ding ◽  
Yuhong Zhou ◽  
Shengying Gu ◽  
...  

Aims: Within the past few years, there has been tremendous growth in clinical trials of chimeric antigen receptor (CAR) T-cell therapies. Unlike those of many small-molecule pharmaceuticals, CAR T-cell therapy clinical trials are fraught with risks due to the use of live cell products. The aim of this study is to reach a consensus with experts on the most relevant set of risks that practically occur in CAR T-cell therapy clinical trials. Methods: A Delphi method of consensus development was used to identify the risks in CAR T-cell therapy clinical trials, comprising three survey rounds. The expert panel consisted of principal investigators, clinical research physicians, members of institutional ethics committees, and Good Clinical Practice managers. Results: Of the 24 experts invited to participate in this Delphi study, 20 participants completed Round 1, Round 2, and Round 3. Finally, consensus (defined as >80% agreement) was achieved for 54 risks relating to CAR T-cell clinical trials. Effective interventions related to these risks are needed to ensure the proper protection of subject health and safety. Conclusion: The Delphi method was successful in gaining a consensus on risks relevant to CAR T-cell clinical trials in a geographically diverse expert association. It is hoped that this work can benefit future risk-based quality management in clinical trials and can potentially promote the better development of CAR T-cell therapy products.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 842 ◽  
Author(s):  
Amy J. Petty ◽  
Benjamin Heyman ◽  
Yiping Yang

Chimeric antigen receptors (CAR) are fusion proteins engineered from antigen recognition, signaling, and costimulatory domains that can be used to reprogram T cells to specifically target tumor cells expressing specific antigens. Current CAR-T cell technology utilizes the patient’s own T cells to stably express CARs and has achieved exciting clinical success in the past few years. However, current CAR-T cell therapy still faces several challenges, including suboptimal persistence and potency, impaired trafficking to solid tumors, local immunosuppression within the tumor microenvironment and intrinsic toxicity associated with CAR-T cells. This review focuses on recent strategies to improve the clinical efficacy of CAR-T cell therapy and other exciting CAR approaches currently under investigation, including CAR natural killer (NK) and NKT cell therapies.


Sign in / Sign up

Export Citation Format

Share Document