scholarly journals Landscape of Driver Gene Events, Biomarkers and Druggable Targets Identified by Whole Genome Sequencing of Glioblastomas

Author(s):  
Wesley S van de Geer ◽  
Youri Hoogstrate ◽  
Kaspar Draaisma ◽  
Pierre A Robe ◽  
Sander Bins ◽  
...  

Abstract Background The survival of glioblastoma patients is poor. Median survival after diagnosis is 15 months, despite treatment involving surgical resection, radiotherapy and/or temozolomide chemotherapy. Identification of novel targets and stratification strategies of glioblastoma patients to improve patient survival is urgently needed. Whole genome sequencing (WGS) is the most comprehensive means to identify such DNA-level targets. We report a unique set of WGS samples along with comprehensive analyses of the glioblastoma genome and potential clinical impact of WGS. Methods Our cohort consisted of 42 glioblastoma tumor tissue and matched whole-blood samples, which were whole-genome sequenced as part of the CPCT-02 study. Somatic single-nucleotide variants, small insertions/deletions, multi-nucleotide variants, copy-number alterations (CNAs) and structural variants were analyzed. These aberrations were harnessed to investigate driver genes, enrichments in CNAs, mutational signatures, fusion genes and potential targeted therapies. Results Tumor mutational burden (TMB) was similar to other WGS efforts (1-342 mutations per megabase pair). Mutational analysis in low TMB samples showed that the age-related CpG demethylation signature was dominant, while hyper- and ultramutated tumors had additional defective DNA mismatch repair signatures and showed microsatellite instability in their genomes. We detected chromothripsis in 24% of our cohort, recurrently on chromosomes 1 and 12. Recurrent non-coding regions only resulted in TERT promoter variants. Finally, we found biomarkers and potentially druggable changes in all but one of our tumor samples. Conclusions With high quality WGS data and comprehensive methods, we identified the landscape of driver gene events and druggable targets in glioblastoma patients.

2018 ◽  
Author(s):  
Maxime Garcia ◽  
Szilveszter Juhos ◽  
Malin Larsson ◽  
Pall I. Olason ◽  
Marcel Martin ◽  
...  

AbstractSummaryWhole-genome sequencing (WGS) is a cornerstone of precision medicine, but portable and reproducible open-source workflows for WGS analyses of germline and somatic variants are lacking. We present Sarek, a modular, comprehensive, and easy-to-install workflow, combining a range of software for the identification and annotation of single-nucleotide variants (SNVs), insertion and deletion variants (indels), structural variants, tumor sample heterogeneity, and karyotyping from germline or paired tumor/normal samples. Sarek is implemented in a bioinformatics workflow language (Nextflow) with Docker and Singularity compatible containers, ensuring easy deployment and full reproducibility at any Linux based compute cluster or cloud computing environment. Sarek supports the human reference genomes GRCh37 and GRCh38, and can readily be used both as a core production workflow at sequencing facilities and as a powerful stand-alone tool for individual research groups.AvailabilitySource code and instructions for local installation are available at GitHub (https://github.com/SciLifeLab/Sarek) under the MIT open-source license, and we invite the research community to contribute additional functionality as a collaborative open-source development project.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii408-iii408
Author(s):  
Marina Danilenko ◽  
Masood Zaka ◽  
Claire Keeling ◽  
Stephen Crosier ◽  
Rafiqul Hussain ◽  
...  

Abstract Medulloblastomas harbor clinically-significant intra-tumoral heterogeneity for key biomarkers (e.g. MYC/MYCN, β-catenin). Recent studies have characterized transcriptional heterogeneity at the single-cell level, however the underlying genomic copy number and mutational architecture remains to be resolved. We therefore sought to establish the intra-tumoural genomic heterogeneity of medulloblastoma at single-cell resolution. Copy number patterns were dissected by whole-genome sequencing in 1024 single cells isolated from multiple distinct tumour regions within 16 snap-frozen medulloblastomas, representing the major molecular subgroups (WNT, SHH, Group3, Group4) and genotypes (i.e. MYC amplification, TP53 mutation). Common copy number driver and subclonal events were identified, providing clear evidence of copy number evolution in medulloblastoma development. Moreover, subclonal whole-arm and focal copy number alterations covering important genomic loci (e.g. on chr10 of SHH patients) were detected in single tumour cells, yet undetectable at the bulk-tumor level. Spatial copy number heterogeneity was also common, with differences between clonal and subclonal events detected in distinct regions of individual tumours. Mutational analysis of the cells allowed dissection of spatial and clonal heterogeneity patterns for key medulloblastoma mutations (e.g. CTNNB1, TP53, SMARCA4, PTCH1) within our cohort. Integrated copy number and mutational analysis is underway to establish their inter-relationships and relative contributions to clonal evolution during tumourigenesis. In summary, single-cell analysis has enabled the resolution of common mutational and copy number drivers, alongside sub-clonal events and distinct patterns of clonal and spatial evolution, in medulloblastoma development. We anticipate these findings will provide a critical foundation for future improved biomarker selection, and the development of targeted therapies.


2020 ◽  
Vol 29 (1) ◽  
pp. 184-193 ◽  
Author(s):  
Jonas Carlsson Almlöf ◽  
Sara Nystedt ◽  
Aikaterini Mechtidou ◽  
Dag Leonard ◽  
Maija-Leena Eloranta ◽  
...  

AbstractBy performing whole-genome sequencing in a Swedish cohort of 71 parent-offspring trios, in which the child in each family is affected by systemic lupus erythematosus (SLE, OMIM 152700), we investigated the contribution of de novo variants to risk of SLE. We found de novo single nucleotide variants (SNVs) to be significantly enriched in gene promoters in SLE patients compared with healthy controls at a level corresponding to 26 de novo promoter SNVs more in each patient than expected. We identified 12 de novo SNVs in promoter regions of genes that have been previously implicated in SLE, or that have functions that could be of relevance to SLE. Furthermore, we detected three missense de novo SNVs, five de novo insertion-deletions, and three de novo structural variants with potential to affect the expression of genes that are relevant for SLE. Based on enrichment analysis, disease-affecting de novo SNVs are expected to occur in one-third of SLE patients. This study shows that de novo variants in promoters commonly contribute to the genetic risk of SLE. The fact that de novo SNVs in SLE were enriched to promoter regions highlights the importance of using whole-genome sequencing for identification of de novo variants.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1038 ◽  
Author(s):  
Jennifer H. Kopanke ◽  
Justin S. Lee ◽  
Mark D. Stenglein ◽  
Christie E. Mayo

Bluetongue virus (BTV) is an arbovirus that has been associated with dramatic epizootics in both wild and domestic ruminants in recent decades. As a segmented, double-stranded RNA virus, BTV can evolve via several mechanisms due to its genomic structure. However, the effect of BTV’s alternating-host transmission cycle on the virus’s genetic diversification remains poorly understood. Whole genome sequencing approaches offer a platform for investigating the effect of host-alternation across all ten segments of BTV’s genome. To understand the role of alternating hosts in BTV’s genetic diversification, a field isolate was passaged under three different conditions: (i) serial passages in Culicoides sonorensis cells, (ii) serial passages in bovine pulmonary artery endothelial cells, or (iii) alternating passages between insect and bovine cells. Aliquots of virus were sequenced, and single nucleotide variants were identified. Measures of viral population genetics were used to quantify the genetic diversification that occurred. Two consensus variants in segments 5 and 10 occurred in virus from all three conditions. While variants arose across all passages, measures of genetic diversity remained largely similar across cell culture conditions. Despite passage in a relaxed in vitro system, we found that this BTV isolate exhibited genetic stability across passages and conditions. Our findings underscore the valuable role that whole genome sequencing may play in improving understanding of viral evolution and highlight the genetic stability of BTV.


2019 ◽  
Author(s):  
James M. Holt ◽  
Camille L. Birch ◽  
Donna M. Brown ◽  
Manavalan Gajapathy ◽  
Nadiya Sosonkina ◽  
...  

AbstractPurposeClinical whole genome sequencing is becoming more common for determining the molecular diagnosis of rare disease. However, standard clinical practice often focuses on small variants such as single nucleotide variants and small insertions/deletions. This leaves a wide range of larger “structural variants” that are not commonly analyzed in patients.MethodsWe developed a pipeline for processing structural variants for patients who received whole genome sequencing through the Undiagnosed Diseases Network (UDN). This pipeline called structural variants, stored them in an internal database, and filtered the variants based on internal frequencies and external annotations. The remaining variants were manually inspected and then interesting findings were reported as research variants to clinical sites in the UDN.ResultsOf 477 analyzed UDN cases, 286 cases (≈ 60%) received at least one structural variant as a research finding. The variants in 16 cases (≈ 4%) are considered “Certain” or “Highly likely” molecularly diagnosed and another 4 cases are currently in review. Of those 20 cases, at least 13 were identified originally through our pipeline with one finding leading to identification of a new disease. As part of this paper, we have also released the collection of variant calls identified in our cohort along with heterozygous and homozygous call counts. This data is available at https://github.com/HudsonAlpha/UDN_SV_export.ConclusionStructural variants are key genetic features that should be analyzed during routine clinical genomic analysis. For our UDN patients, structural variants helped solve ≈ 4% of the total number of cases (≈ 13% of all genome sequencing solves), a success rate we expect to improve with better tools and greater understanding of the human genome.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Bohu Pan ◽  
Luyao Ren ◽  
Vitor Onuchic ◽  
Meijian Guan ◽  
Rebecca Kusko ◽  
...  

Abstract Background Reproducible detection of inherited variants with whole genome sequencing (WGS) is vital for the implementation of precision medicine and is a complicated process in which each step affects variant call quality. Systematically assessing reproducibility of inherited variants with WGS and impact of each step in the process is needed for understanding and improving quality of inherited variants from WGS. Results To dissect the impact of factors involved in detection of inherited variants with WGS, we sequence triplicates of eight DNA samples representing two populations on three short-read sequencing platforms using three library kits in six labs and call variants with 56 combinations of aligners and callers. We find that bioinformatics pipelines (callers and aligners) have a larger impact on variant reproducibility than WGS platform or library preparation. Single-nucleotide variants (SNVs), particularly outside difficult-to-map regions, are more reproducible than small insertions and deletions (indels), which are least reproducible when > 5 bp. Increasing sequencing coverage improves indel reproducibility but has limited impact on SNVs above 30×. Conclusions Our findings highlight sources of variability in variant detection and the need for improvement of bioinformatics pipelines in the era of precision medicine with WGS.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 103-103
Author(s):  
Yasuhito Nannya ◽  
Kenichi Yoshida ◽  
Lanying Zhao ◽  
June Takeda ◽  
Hiroo Ueno ◽  
...  

Abstract Background Intensive efforts of genome sequencing studies during the past decade identified >100 driver genes recurrently mutated in one or more subtypes of myeloid neoplasms, which collectively account for the pathogenesis of >90% of the cases. However, approximately 10% of the cases have no alterations in known drivers and their pathogenesis is still unclear. A possible explanation might be the presence of alterations in non-coding regions that are not detected by conventional exome/panel sequencing; mutations and complex structural variations (SVs) affecting these regions have been shown to deregulate expression of relevant genes in a variety of solid cancers. Unfortunately, however, no large studies have ever been performed, in which a large cohort of myeloid malignancies were analyzed using whole genome sequencing (WGS) in an attempt to identify a full spectrum of non-coding alterations, even though its efficacy have been demonstrated in many solid cancers. In this study, we performed WGS in a large cohort of pan-myeloid cancers, in which both coding and non-coding lesions were comprehensively analyzed. Patients and methods A total of 338 cases of myeloid malignancies, including 212 with MDS, 70 with AML, 17 with MDS/MPN, 23 with t-AML/MDS, and 16 with MPN were analyzed with WGS, of which 173 were also analyzed by transcriptome sequencing. Tumor samples were obtained from patients' bone marrow (N=269) or peripheral blood (N=69), while normal controls were derived from buccal smear (N=263) or peripheral T cells (N=75). Sequencing of target panel of 86 genes were performed for all samples. Sequencing data were processed using in-house pipelines, which were optimized for detection of complex structural variations (SVs) and abnormalities in non-coding sequences. Results WGS identified a median of 586,612 single nucleotide variants (SNVs) and 124,863 short indels per genome. NMF-based decomposition of the variants disclosed three major mutational signatures, which were characterized by age-related C>T transitions at CpG sites (Sig. A), C>T transitions at CpT sites (Sig. B), and T>C transitions at ApTpN context (Sig. C). Among these, Sig. C showed a prominent strand bias and corresponds to COSMIC signature 16, which has recently been implicated in alcohol drinking. Significant clustering of SNVs and short indels were interrogated across the genome divided into different window sizes (1Kbp, 10Kbp, 100Kbp) or confining the targets to coding exons and known regulatory regions, such as promoters, enhancers/super enhances, and DNase I hypersensitive sites. Recapitulating previous findings, SNVs in the coding exons were significantly enriched in known drivers, including TP53, TET2, ASXL1, DNMT3A, SF3B1, RUNX1, EZH2, and STAG2. We detected significant enrichment of SNVs in CpG islands, and promoters/enhancers. We also detected a total of 8,242 SVs with a median of 15 SVs/sample, which is more prevalent than expected from conventional karyotype analysis. Focal clusters of complex rearrangements compatible with chromothripsis were found in 8 cases, of which 7 carried biallelic TP53 alterations. NMF-based signature analysis of SVs revealed that large (>1Mb) deletions, inversions, and tandem duplications and translocations are clustered together and were strongly associated with TP53 mutations, while smaller deletions and tandem duplications, but not inversions, constitute another cluster. As expected, FLT3-ITD (N=15) and MLL-PTD (N=12) were among the most frequent SVs. Unexpectedly, in addition to known SVs associated with t(8;21) (RUNX1-RUNX1T1) (N=6) and t(3;21) (RUNX1-MECOM) (n=1) as well as non-synonymous SNVs within the coding exons (N=30), we detected frequent non-coding alterations affecting RUNX1, including SVs (N=15) and SNVs around splicing acceptor sites (N=5), suggesting that RUNX1 was affected by multiple mechanism, where as many as 38% of RUNX1 lesions were explained by non-coding alterations. Other recurrent targets of non-coding lesions included ASXL1, NF1, and ETV6. Conclusions WGS was successfully used to reveal a comprehensive registry of genetic alterations in pan-myeloid cancers. Non-coding alterations affecting known driver genes were more common than expected, suggesting the importance of detecting non-coding abnormalities in diagnostic sequencing. Disclosures Nakagawa: Sumitomo Dainippon Pharma Co., Ltd.: Research Funding. Usuki:Mochida Pharmaceutical: Speakers Bureau; Astellas Pharma Inc.: Research Funding; Sanofi K.K.: Research Funding; GlaxoSmithKline K.K.: Research Funding; Otsuka Pharmaceutical Co., Ltd.: Research Funding; Kyowa Hakko Kirin Co., Ltd.: Research Funding; Daiichi Sankyo: Research Funding; Celgene Corporation: Research Funding, Speakers Bureau; SymBio Pharmaceuticals Limited.: Research Funding; Shire Japan: Research Funding; Janssen Pharmaceutical K.K: Research Funding; Boehringer-Ingelheim Japan: Research Funding; Sumitomo Dainippon Pharma: Research Funding, Speakers Bureau; Pfizer Japan: Research Funding, Speakers Bureau; Novartis: Speakers Bureau; Nippon Shinyaku: Speakers Bureau; Chugai Pharmaceutical: Speakers Bureau; Takeda Pharmaceutical: Speakers Bureau; Ono Pharmaceutical: Speakers Bureau; MSD K.K.: Speakers Bureau. Chiba:Bristol Myers Squibb, Astellas Pharma, Kyowa Hakko Kirin: Research Funding. Miyawaki:Otsuka Pharmaceutical Co., Ltd.: Consultancy; Novartis Pharma KK: Consultancy; Astellas Pharma Inc.: Consultancy.


2021 ◽  
Vol 5 (12) ◽  
pp. 2563-2568
Author(s):  
Chunyan Sun ◽  
Jian Xu ◽  
Bo Zhang ◽  
Haifan Huang ◽  
Lei Chen ◽  
...  

TEMPI syndrome (telangiectasias, elevated erythropoietin level and erythrocytosis, monoclonal gammopathy, perinephric fluid collections, and intrapulmonary shunting) is a newly defined multisystemic disease with its pathophysiology largely unknown. Here, we report the whole-genome sequencing (WGS) analysis on the tumor-normal paired cells from a patient with TEMPI syndrome. WGS revealed somatic nonsynonymous single-nucleotide variants, including SLC7A8, NRP2, and AQP7. Complex structural variants of chromosome 2 were found, particularly within regions where some putative oncogenes reside. Of potential clinical relevance, duplication of 22q11.23 was identified, and the expression of the located gene macrophage migration inhibitory factor (MIF) was significantly upregulated in 3 patients with TEMPI syndrome. Importantly, the level of serum MIF in one patient with TEMPI syndrome was significantly decreased in accordance with the downtrend of plasma cells, M-protein, hemoglobin, and erythropoietin and the improvement of telangiectasias, perinephric fluid collections, and intrapulmonary shunting after treatment with plasma cell–directed therapy. In conclusion, our study provides insights into the genomic landscape and suggests a role of MIF in the pathophysiology of TEMPI syndrome.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e19013-e19013
Author(s):  
Michael Asiedu ◽  
Julian R. Molina ◽  
Jin Jen ◽  
Jin Sung Jang ◽  
Anja Roden ◽  
...  

e19013 Background: Mutation profiling to assess for potentially druggable mutations in NSCLC is being offered at an increasing number of cancer centers throughout North America and internationally. Although data continue to accumulate for the potential value of mutation testing in designing chemotherapeutic regimens, the treatment impact of obtaining information beyond assessment of EGFR and ALK status remains unclear. How best to obtain and clinically utilize these data, including information from exome and whole genome sequencing, also remains unclear. Methods: Patients were reviewed electronically in a multidisciplinary conference regarding indications for testing and results of mutation profiling from various methods, including the mass-spec based LungCarta test, targeted NexGen sequencing, exome, and whole genome sequencing. Outcomes of the multidisciplinary review were communicated back to treating physicians. Results: Mutation testing was performed on 200 patients using a variety of approaches. The majority (>150) were surgically resected stage I and II tumors. Mutations in at least 1 major cancer driver gene, including EGFR, KRAS, MET, BRAF and PIK3CA, were found in 47% of all patients tested. EGFR mutations were present in 14.8% of patients tested, KRAS 21.3%, BRAF 2.6%, PIK3CA 3.2%, and MET 4.5%. A total of 8 patients underwent either exome or whole genome sequencing. A limited number of patients (<10) had mutation results that impacted treatment decisions from this cohort. Conclusions: Mutation profiling can influence treatment decisions in NSCLC, but at a low frequency. The role of exome and or whole genome sequencing for patients with NSCLC is evolving and remains undefined.


Sign in / Sign up

Export Citation Format

Share Document