scholarly journals 1216. Presence of the Narrow-Spectrum OXA-1 Beta-lactamase Enzyme Is Associated with Elevated Piperacillin-Tazobactam MIC Values Among ESBL-producing Escherichia coli Clinical Isolates (CANWARD, 2007-2018)

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S697-S697
Author(s):  
Andrew Walkty ◽  
James Karlowsky ◽  
Philippe Lagace-Wiens ◽  
Alyssa Golden ◽  
Melanie Baxter ◽  
...  

Abstract Background The clinical outcome of patients with bacteremia due to an extended-spectrum beta-lactamase (ESBL)-producing member of the family Enterobacteriaceae who are treated with piperacillin-tazobactam appears to depend, at least in part, on the piperacillin-tazobactam MIC. The purpose of this study was to determine whether there is any association between the MIC of piperacillin-tazobactam and presence of the narrow spectrum OXA-1 beta-lactamase enzyme among ESBL-producing Escherichia coli. Methods E. coli clinical isolates were obtained from patients evaluated at hospitals across Canada (January 2007 to December 2018) as part of an ongoing national surveillance study (CANWARD). ESBL production was confirmed using the Clinical and Laboratory Standards Institute phenotypic method. Susceptibility testing was carried out using custom broth microdilution panels, and all isolates underwent whole genome sequencing for beta-lactamase gene detection. Results In total, 671 ESBL-producing E. coli were identified as part of the CANWARD study. The majority of isolates (92.0%; 617/671) harbored a CTX-M ESBL enzyme. CTX-M-15 (62.3%; 418/671), CTX-M-27 (13.9%; 93/671), and CTX-M-14 (13.4%; 90/671) were the most common variants identified. The narrow spectrum OXA-1 beta-lactamase enzyme was present in 42.6% (286/671) of isolates. OXA-1 was detected in 66.3% (277/418) of isolates with a CTX-M-15 ESBL enzyme versus only 3.6% (9/253) of isolates with other ESBL enzyme types. The piperacillin-tazobactam MIC50 and MIC90 values were 8 µg/mL and 32 µg/mL for isolates that possessed the OXA-1 enzyme versus 2 μg/mL and 8 µg/mL for those that did not. The percentage of ESBL-producing E. coli isolates that were inhibited by a piperacillin-tazobactam MIC of ≤8 μg/mL was 68.5% for isolates that were OXA-1 positive and 93.8% for isolates that were OXA-1 negative. Conclusion The MIC50 and MIC90 values of piperacillin-tazobactam among ESBL-producing E. coli were higher for the subset of isolates that harbored a narrow spectrum OXA-1 beta-lactamase enzyme relative to the subset that did not. This association was primarily observed among ESBL-producers with the CTX-M-15 enzyme variant. OXA-1 was infrequently detected among isolates with other ESBL enzyme types. Disclosures George Zhanel, PhD, AVIR (Grant/Research Support)Iterum (Grant/Research Support)Merck (Grant/Research Support)Pfizer (Grant/Research Support)Sandoz (Grant/Research Support)Sunovion (Grant/Research Support)Venatorx (Grant/Research Support)Verity (Grant/Research Support)

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Martha Uzoaru Ajuga ◽  
Kome Otokunefor ◽  
Obakpororo Ejiro Agbagwa

Abstract Background The increase in multidrug resistance (MDR) among pathogenic bacteria responsible for infectious diseases has led to lack of effectiveness of some antibiotics. The ability of Escherichia coli to harbor resistant genes has made the treatment of infections a major challenge. This study was carried out to assess antibiotic resistance and extended-spectrum beta-lactamase (ESBL) production of E. coli from various sources in Aba metropolis, Nigeria. Results From a total of 350 samples collected from clinical and non-clinical sources, 137 were presumptively identified as E. coli by standard phenotypic methods and 83 were confirmed as E. coli by the detection of E. coli specific 16S rRNA gene fragments. The majority of these isolates (52, 62.7%) were from non-clinical sources. The clinical isolates, however, exhibited a higher level of resistance against 62.5% of tested antibiotics. Both group of isolates exhibited similar levels (58.1% vs 53.9%) of MDR, though. A low rate of ESBL production was observed (1.2%) following phenotypic detection of ESBL-producing abilities using the double-disc synergy test. An assessment of the presence of three beta-lactamase gene genotypes (blaTEM, blaSHV and blaCTX-M) revealed that none of the three predominant ESBL genotypes was identified in this study. Conclusions This study reports high levels of antibiotic resistance in both clinical and non-clinical E. coli isolates. Though higher rates of resistance were observed among the non-clinical isolates, both group of organisms had similar levels of MDR. Strikingly, however, was the low level of ESBL producers detected in this study and the absence of the three main genotypes associated with ESBL production in this study.


2014 ◽  
Vol 81 (2) ◽  
pp. 648-657 ◽  
Author(s):  
Ivana Jamborova ◽  
Monika Dolejska ◽  
Jiri Vojtech ◽  
Sebastian Guenther ◽  
Raluca Uricariu ◽  
...  

ABSTRACTExtended-spectrum-beta-lactamase (ESBL)-producing, AmpC beta-lactamase-producing, and plasmid-mediated quinolone resistance (PMQR) gene-positive strains ofEscherichia coliwere investigated in wintering rooks (Corvus frugilegus) from eight European countries. Fecal samples (n= 1,073) from rooks wintering in the Czech Republic, France, Germany, Italy, Poland, Serbia, Spain, and Switzerland were examined. Resistant isolates obtained from selective cultivation were screened for ESBL, AmpC, and PMQR genes by PCR and sequencing. Pulsed-field gel electrophoresis and multilocus sequence typing were performed to reveal their clonal relatedness. In total, from the 1,073 samples, 152 (14%) cefotaxime-resistantE. coliisolates and 355 (33%)E. coliisolates with reduced susceptibility to ciprofloxacin were found. Eighty-two (54%) of these cefotaxime-resistantE. coliisolates carried the following ESBL genes:blaCTX-M-1(n= 39 isolates),blaCTX-M-15(n= 25),blaCTX-M-24(n= 4),blaTEM-52(n= 4),blaCTX-M-14(n= 2),blaCTX-M-55(n= 2),blaSHV-12(n= 2),blaCTX-M-8(n= 1),blaCTX-M-25(n= 1),blaCTX-M-28(n= 1), and an unspecified gene (n= 1). Forty-seven (31%) cefotaxime-resistantE. coliisolates carried theblaCMY-2AmpC beta-lactamase gene. Sixty-two (17%) of theE. coliisolates with reduced susceptibility to ciprofloxacin were positive for the PMQR genesqnrS1(n= 54),qnrB19(n= 4),qnrS1andqnrB19(n= 2),qnrS2(n= 1), andaac(6′)-Ib-cr(n= 1). Eleven isolates from the Czech Republic (n= 8) and Serbia (n= 3) were identified to be CTX-M-15-producingE. coliclone B2-O25b-ST131 isolates. Ninety-one different sequence types (STs) among 191 ESBL-producing, AmpC-producing, and PMQR gene-positiveE. coliisolates were determined, with ST58 (n= 15), ST10 (n= 14), and ST131 (n= 12) predominating. The widespread occurrence of highly diverse ESBL- and AmpC-producing and PMQR gene-positiveE. coliisolates, including the clinically important multiresistant ST69, ST95, ST117, ST131, and ST405 clones, was demonstrated in rooks wintering in various European countries.


2022 ◽  
Vol 12 ◽  
Author(s):  
Bálint József Nagy ◽  
Bence Balázs ◽  
Isma Benmazouz ◽  
Péter Gyüre ◽  
László Kövér ◽  
...  

During winter, a large number of rooks gather and defecate at the park of a university clinic. We investigated the prevalence of extended-spectrum beta-lactamase (ESBL)–producing Escherichia coli in these birds and compared recovered isolates with contemporary human isolates. In 2016, fecal samples were collected from 112 trap-captured rooks and investigated for presence of ESBL producers using eosin methylene blue agar supplemented by 2 mg/L cefotaxime; 2,455 contemporary human fecal samples of patients of the clinics sent for routine culturing were tested similarly. In addition, 42 ESBL-producing E. coli isolates collected during the same period from inpatients were also studied. ESBL genes were sought for by PCR and were characterized by sequencing; E. coli ST131 clones were identified. Epidemiological relatedness was determined by pulsed-field gel electrophoresis and confirmed using whole genome sequencing in selected cases. Thirty-seven (33%) of sampled rooks and 42 (1.7%) of human stools yielded ESBL-producing E coli. Dominant genes were blaCTX–M–55 and blaCTX–M–27 in corvid, blaCTX–M–15 and blaCTX–M–27 in human isolates. ST162 was common among rooks. Two rook-derived E. coli belonged to ST131 C1-M27, which was also predominant (10/42) among human fecal and (15/42) human clinical isolates. Another potential link between rooks and humans was a single ST744 rook isolate grouped with one human fecal and three clinical isolates. Despite possible contact, genotypes shared between rooks and humans were rare. Thus, rooks are important as long-distance vectors and reservoirs of ESBL-producing E. coli rather than direct sources of infections to humans in our setting.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 406
Author(s):  
Zuhura I. Kimera ◽  
Fauster X. Mgaya ◽  
Gerald Misinzo ◽  
Stephen E. Mshana ◽  
Nyambura Moremi ◽  
...  

We determined the phenotypic profile of multidrug-resistant (MDR) Escherichia coli isolated from 698 samples (390 and 308 from poultry and domestic pigs, respectively). In total, 562 Enterobacteria were isolated. About 80.5% of the isolates were E. coli. Occurrence of E. coli was significantly higher among domestic pigs (73.1%) than in poultry (60.5%) (p = 0.000). In both poultry and domestic pigs, E. coli isolates were highly resistant to tetracycline (63.5%), nalidixic acid (53.7%), ampicillin (52.3%), and trimethoprim/sulfamethoxazole (50.9%). About 51.6%, 65.3%, and 53.7% of E. coli were MDR, extended-spectrum beta lactamase-producing enterobacteriaceae (ESBL-PE), and quinolone-resistant, respectively. A total of 68% of the extended-spectrum beta lactamase (ESBL) producers were also resistant to quinolones. For all tested antibiotics, resistance was significantly higher in ESBL-producing and quinolone-resistant isolates than the non-ESBL producers and non-quinolone-resistant E. coli. Eight isolates were resistant to eight classes of antimicrobials. We compared phenotypic with genotypic results of 20 MDR E. coli isolates, ESBL producers, and quinolone-resistant strains and found 80% harbored blaCTX-M, 15% aac(6)-lb-cr, 10% qnrB, and 5% qepA. None harbored TEM, SHV, qnrA, qnrS, qnrC, or qnrD. The observed pattern and level of resistance render this portfolio of antibiotics ineffective for their intended use.


2011 ◽  
Vol 2 (1) ◽  
pp. 8
Author(s):  
Ronak Bakhtiari ◽  
Jalil Fallah Mehrabadi ◽  
Hedroosha Molla Agamirzaei ◽  
Ailar Sabbaghi ◽  
Mohammad Mehdi Soltan Dallal

Resistance to b-lactam antibiotics by gramnegative bacteria, especially <em>Escherichia coli (E. coli)</em>, is a major public health issue worldwide. The predominant resistance mechanism in gram negative bacteria particularly <em>E. coli </em>is via the production of extended spectrum beta lactamase (ESBLs) enzymes. In recent years, the prevalence of b-lactamase producing organisms is increased and identification of these isolates by using disk diffusion method and no-one else is not satisfactory. So, this investigation focused on evaluating the prevalence of ESBL enzymes by disk diffusion method and confirmatory test (Combined Disk). Five hundred clinical samples were collected and 200 <em>E. coli </em>isolates were detected by standard biochemical tests. To performing initial screening of ESBLs was used from Disk diffusion method on <em>E. coli </em>isolates. A confirmation test (Combined Disk method) was performed on isolates of resistant to cephalosporin's indicators. Up to 70% isolates exhibited the Multi Drug Resistance phenotype. In Disk diffusion method, 128(64%) <em>E. coli </em>isolates which resistant to ceftazidime and cefotaxime while in Combined Disk, among 128 screened isolates, 115 (89.8%) isolates were detected as ESBLs producers. This survey indicate beta lactamase enzymes are playing a significant role in antibiotic resistance and correct detection of them in phenotypic test by using disk diffusion and combined Disk is essential for accurate recognition of ESBLs.


2021 ◽  
Vol 6 (2) ◽  
pp. 105
Author(s):  
Regina Ama Banu ◽  
Jorge Matheu Alvarez ◽  
Anthony J. Reid ◽  
Wendemagegn Enbiale ◽  
Appiah-Korang Labi ◽  
...  

Infections by Extended-Spectrum Beta-Lactamase producing Escherichia coli (ESBL-Ec) are on the increase in Ghana, but the level of environmental contamination with this organism, which may contribute to growing Antimicrobial Resistance (AMR), is unknown. Using the WHO OneHealth Tricycle Protocol, we investigated the contamination of E. coli (Ec) and ESBL-Ec in two rivers in Ghana (Odaw in Accra and Okurudu in Kasoa) that receive effluents from human and animal wastewater hotspots over a 12-month period. Concentrations of Ec, ESBL-Ec and percent ESBL-Ec/Ec were determined per 100 mL sample. Of 96 samples, 94 (98%) were positive for ESBL-Ec. concentrations per 100 mL (MCs100) of ESBL-Ec and %ESBL-Ec from both rivers were 4.2 × 104 (IQR, 3.1 × 103–2.3 × 105) and 2.79 (IQR, 0.96–6.03), respectively. MCs100 were significantly lower in upstream waters: 1.8 × 104 (IQR, 9.0 × 103–3.9 × 104) as compared to downstream waters: 1.9 × 106 (IQR, 3.7 × 105–5.4 × 106). Both human and animal wastewater effluents contributed to the increased contamination downstream. This study revealed high levels of ESBL-Ec in rivers flowing through two cities in Ghana. There is a need to manage the sources of contamination as they may contribute to the acquisition and spread of ESBL-Ec in humans and animals, thereby contributing to AMR.


2010 ◽  
Vol 54 (7) ◽  
pp. 3043-3046 ◽  
Author(s):  
Stephen P. Hawser ◽  
Samuel K. Bouchillon ◽  
Daryl J. Hoban ◽  
Robert E. Badal ◽  
Rafael Cantón ◽  
...  

ABSTRACT From 2002 to 2008, there was a significant increase in extended-spectrum beta-lactamase (ESBL)-positive Escherichia coli isolates in European intra-abdominal infections, from 4.3% in 2002 to 11.8% in 2008 (P < 0.001), but not for ESBL-positive Klebsiella pneumoniae isolates (16.4% to 17.9% [P > 0.05]). Hospital-associated isolates were more common than community-associated isolates, at 14.0% versus 6.5%, respectively, for E. coli (P < 0.001) and 20.9% versus 5.3%, respectively, for K. pneumoniae (P < 0.01). Carbapenems were consistently the most active drugs tested.


2019 ◽  
Author(s):  
Denise van Hout ◽  
Tess D. Verschuuren ◽  
Patricia C.J. Bruijning-Verhagen ◽  
Thijs Bosch ◽  
Anita C. Schürch ◽  
...  

ABSTRACTBackgroundKnowledge on the molecular epidemiology of Escherichia coli causing E. coli bacteremia (ECB) in the Netherlands is mostly based on extended-spectrum beta-lactamase-producing E. coli (ESBL-Ec). We determined differences in clonality and resistance and virulence gene (VG) content between non-ESBL-producing E. coli (non-ESBL-Ec) and ESBL-Ec blood isolates with different epidemiological characteristics.Materials/methodsA random selection of non-ESBL-Ec isolates as well as all available ESBL-Ec blood isolates was obtained from two Dutch hospitals between 2014 and 2016. Whole genome sequencing was performed to infer sequence types (STs), serotypes, acquired antibiotic resistance genes and VG scores, based on presence of 49 predefined putative pathogenic VG.ResultsST73 was most prevalent among the 212 non-ESBL-Ec (N=26, 12.3%) and ST131 among the 69 ESBL-Ec (N=30, 43.5%). Prevalence of ST131 among non-ESBL-Ec was 10.4% (N=22, P value < 0.001 compared to ESBL-Ec). O25:H4 was the most common serotype in both non-ESBL-Ec and ESBL-Ec. Median acquired resistance gene counts were 1 (IQR 1 – 6) and 7 (IQR 4 – 9) for non-ESBL-Ec and ESBL-Ec, respectively (P value < 0.001). Among non-ESBL-Ec, acquired resistance gene count was highest among blood isolates from a primary gastro-intestinal focus (median 4, IQR 1 – 8). Median VG scores were 13 (IQR 9 – 20) and 12 (IQR 8 – 14) for non-ESBL-Ec and ESBL-Ec, respectively (P value = 0.002). VG scores among non-ESBL-Ec from a primary urinary focus (median 15, IQR 11 – 21) were higher compared to non-ESBL-Ec from a primary gastro-intestinal (median 10, IQR 6 – 13) or hepatic-biliary focus (median 11, IQR 5 – 18) (P values = 0.007 and 0.036, respectively). VG content varied between different E. coli STs.ConclusionsNon-ESBL-Ec and ESBL-Ec blood isolates from two Dutch hospitals differed in clonal distribution, resistance gene and VG content. Also, resistance gene and VG content differed between non-ESBL-Ec from different primary foci of ECB.


Sign in / Sign up

Export Citation Format

Share Document