scholarly journals Public Health Response to US Cases of Candida auris, a Globally Emerging, Multidrug-Resistant Yeast, 2013–2017

2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S72-S73
Author(s):  
Sharon Tsay ◽  
Rory M Welsh ◽  
Eleanor H Adams ◽  
Nancy A Chow ◽  
Lalitha Gade ◽  
...  

Abstract Background Candida auris is an often multidrug-resistant yeast that causes invasive infections and, unlike most Candida species, spreads in healthcare facilities. CDC released a clinical alert in June 2016 requesting reporting of C. auris cases. We investigated cases to contain transmission and inform prevention measures for this novel organism. Methods Clinical cases were defined as C. auris from any clinical specimen from a patient in the United States. Response to cases included implementation of infection control measures, enhanced cleaning and disinfection, and testing of close contacts for C. auris colonisation (isolation from a person’s axilla or groin was defined as a screening case). Microbiology records were reviewed at reporting facilities for missed cases. All isolates were forwarded to CDC for confirmation, antifungal susceptibility testing, and whole-genome sequencing (WGS). Results As of April 13, 2017, 61 clinical cases of C. auris were reported from six states: New York (39), New Jersey (15), Illinois (4), Indiana (1), Maryland (1), and Massachusetts (1). All but two occurred since 2016 (Figure). An additional 32 screening cases were identified among contacts. Median age of clinical case-patients was 70 years (range 21–96); 56% were male. Nearly, all had underlying medical conditions and extensive exposure to healthcare facilities before infection. Most clinical isolates were from blood (38, 62%), followed by urine (8, 13%) and respiratory tract (5, 8%). Among the first 35 isolates, 30 (86%) were resistant to fluconazole, 15 (43%) to amphotericin B, and one (3%) to caspofungin. No isolate was resistant to all three. WGS revealed isolates from each state were highly related and different from other states, suggestive of transmission. Microbiology record reviews did not identify additional cases before 2016. Conclusion C. auris is an emerging pathogen, with similarities to multidrug-resistant bacteria, that has been transmitted in US healthcare settings. CDC and public health partners are committed to prompt and aggressive action through investigation of cases and heightened infection control practices to halt its spread. Disclosures All authors: No reported disclosures.

2021 ◽  
Vol 9 (4) ◽  
pp. 807
Author(s):  
Suhail Ahmad ◽  
Wadha Alfouzan

Candida auris, a recently recognized, often multidrug-resistant yeast, has become a significant fungal pathogen due to its ability to cause invasive infections and outbreaks in healthcare facilities which have been difficult to control and treat. The extraordinary abilities of C. auris to easily contaminate the environment around colonized patients and persist for long periods have recently resulted in major outbreaks in many countries. C. auris resists elimination by robust cleaning and other decontamination procedures, likely due to the formation of ‘dry’ biofilms. Susceptible hospitalized patients, particularly those with multiple comorbidities in intensive care settings, acquire C. auris rather easily from close contact with C. auris-infected patients, their environment, or the equipment used on colonized patients, often with fatal consequences. This review highlights the lessons learned from recent studies on the epidemiology, diagnosis, pathogenesis, susceptibility, and molecular basis of resistance to antifungal drugs and infection control measures to combat the spread of C. auris infections in healthcare facilities. Particular emphasis is given to interventions aiming to prevent new infections in healthcare facilities, including the screening of susceptible patients for colonization; the cleaning and decontamination of the environment, equipment, and colonized patients; and successful approaches to identify and treat infected patients, particularly during outbreaks.


2021 ◽  
Vol 1 (S1) ◽  
pp. s79-s79
Author(s):  
Diana Holden ◽  
Tisha Mitsunaga ◽  
Denise Sanford ◽  
Tanya Fryer ◽  
June Nash ◽  
...  

Background: NDM/OXA-23 carbapenemase-producing Acinetobacter baumannii isolates have been reported worldwide, but rarely in the United States. A California acute-care hospital (ACH) A identified 3 patients with pan-nonsusceptible A. baumannii during May–June 2020, prompting a public health investigation to prevent further transmission among the regional healthcare network. Methods: A clinical isolate was defined as NDM/OXA-23–producing A. baumannii from a patient at ACH A or B, or an epidemiologically linked patient identified through colonization screening during May 2020–January 2021. ACHs A and B are sentinel sites for carbapenem-resistant A. baumannii surveillance through the Antibiotic Resistance Laboratory Network (AR Lab Network), where isolates are tested for carbapenemase genes. The California Department of Public Health with 3 local health departments conducted an epidemiological investigation, contact tracing, colonization screening, and whole-genome sequencing (WGS). Results: In total, 11 cases were identified during May 2020–January 2021, including 3 cases at ACH A during May–June 2020, and 8 additional cases during November 2020–January 2021: 5 at ACH A, 1 at ACH B, and 2 at skilled nursing facility (SNF) A. Isolates from ACHs A and B were identified through testing at the AR Lab Network. Of the 11 patients (including the index patient), 4 had exposure at SNF A, where 2 cases were identified through colonization screening. Screening conducted at ACH A and 5 other long-term care facilities (LTCFs) identified no additional cases. WGS results for the first 8 cases identified showed 2–13 single-nucleotide polymorphism differences. Antibiotic resistance genes for all isolates sequenced included NDM-1 and OXA-23. On-site assessments related to a COVID-19 outbreak conducted at ACH A identified infection control gaps. Conclusions: Hospital participation in public health laboratory surveillance allows early detection of novel multidrug-resistant organisms (MDROs), which enabled outbreak identification and public health response. A high COVID-19 burden and related changes in infection control practices have been associated with MDRO transmission elsewhere in California. This factor might have contributed to spread at ACH A and hampered earlier screening efforts at SNF A, likely leading to undetected transmission. Extensive movement of positive patients among a regional healthcare network including at least 6 ACHs and 7 LTCFs likely contributed to the prolonged duration of this outbreak. This investigation highlights the importance of enhanced novel MDRO surveillance strategies coupled with strong infection prevention and control practices as important factors in identifying outbreaks and preventing further transmission in regional networks.Funding: NoDisclosures: None


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S852-S852
Author(s):  
Brittany VonBank ◽  
Sean O’Malley ◽  
Paula Snippes Vagnone ◽  
Mary Ellen Bennett ◽  
Tammy Hale ◽  
...  

Abstract Background Carbapenem-resistant Enterobacteriaceae (CRE) producing the New Delhi-metallo-β-lactamase (NDM) carbapenemase are uncommon in the United States but are a serious threat for untreatable antibiotic-resistant infections. In Minnesota (MN), NDM-CRE is typically associated with receipt of healthcare abroad. We describe the public health response to contain the first outbreak of NDM-CRE in MN. Methods CRE is reportable, with isolate submission to the MN Department of Health (MDH) for MALDI-TOF identification, phenotypic carbapenemase production testing, and PCR for carbapenemase genes. On December 24, 2018, MDH identified a case of NDM-K. pneumoniae in a long-term care facility (LTCF) without travel. MDH initiated an investigation. We defined a case as having NDM-K. pneumoniae matching the outbreak PFGE pattern from a clinical or surveillance culture. Cases were identified through surveillance, point prevalence survey (PPS) rectal swab colonization testing, and PFGE at MDH. MDH collected a healthcare exposure history for all cases. A containment response occurred in any facility where a case received healthcare in the 30 days prior. Results Nine cases of clonal NDM-K. pneumoniae with specimen collection dates between December 24, 2018 and March 26, 2019 were identified; 8 were residents of LTCF A and 1 was a roommate in LTCF B of a former LTCF A resident. PPS testing of 260 healthcare contacts occurred in 6 facilities, including LTCF A, LTCF B, and 4 acute care hospitals (ACH) that accepted LTCF A transfers; 7/9 cases were identified through PPS and 2/9 cases were identified through CRE surveillance. One case from LTCF A was identified in an ACH, but PPS did not identify transmission in ACHs. MDH conducted on-site infection control assessments in 2 LTCFs, identified numerous infection control (IC) lapses at LTCF A, and provided telephone IC consultation to 4 ACHs. Conclusion Surveillance and PPS uncovered an outbreak of NDM CRE in 2 LTCFs. Patient transfers led to a regional public health response lasting several months that included IC consultation and additional PPS. Intervention to coordinate containment responses among interconnected healthcare facilities is critical to containing the spread of novel resistance mechanisms in the United States. Disclosures All authors: No reported disclosures.


Author(s):  
Logan Gildea ◽  
Joseph Ayariga ◽  
Robert Villafane

The prevalence of multidrug resistant bacterial diseases is a major global health risk. Multidrug resistant bacterial diseases are prevalent, and the need for novel methods of treatment is essential to the preservation of public health. Annually foodborne pathogens cause 1.35 million infections and 26,500 hospitalizations in the United States alone. Foodborne pathogens such as Salmonella spp. are a major threat to public health. Bacteriophages offer a unique method for the treatment of these multidrug resistant bacteria. We studied the infection dynamics of a potential mono-phage therapy of Salmonella typhimurium under various pathophysiological conditions. Furthermore, we determined the resistance dynamics of Salmonella typhimurium against P22 phage treatment. We also determined synergy with antibiotics such as ampicillin and kanamycin. This research helps to further define and show the versatility of bacteriophages as potential novel treatment methods.


2020 ◽  
Vol 41 (S1) ◽  
pp. s162-s163
Author(s):  
Loice Ombajo ◽  
Malcolm Correia ◽  
Alice Kanyua ◽  
Cheptoo Bore ◽  
Phoebe Juma ◽  
...  

Background:Candida auris is of global concern due to its increasing frequency in intensive care units (ICUs), reported resistance to antifungal agents, propensity to cause outbreaks, and persistence in clinical environments. We investigated an increase in C. auris cases in an ICU in Kenya to determine the source of transmission and to control the spread of the disease. Methods: To identify cases, we reviewed laboratory records of patients with blood cultures yielding C. auris and organisms for which it is commonly misidentified by Vitek 2 v 8.01 software (ie, C. haemulonii, C. duobushaemulonii and C. famata) during January 2018–May 2019. We retrospectively reviewed medical charts of C. auris patients to extract information on demographics, underlying conditions, hospital procedures, treatments, and outcomes. We also enhanced infection control efforts by implementing contact precautions, equipment, and environmental disinfection, and hand hygiene training and compliance observations. Results: We identified 32 C. auris patients (Fig. 1). Median patient age was 55 years (IQR, 43–65), and 57% were male. Length of hospitalization before C. auris isolation was 30 days (IQR, 14–36). All had been admitted to the ICU. The most common reasons for admission were sepsis (50%), pneumonia (34%), surgery (25%), and stroke or other neurologic diagnosis (25%). Underlying comorbidities included hypertension (38%), diabetes mellitus (25%), and malignancy (29%). Two patients had HIV. Moreover, 61% of cultures yielded multidrug-resistant bacteria. Also, 33% of the patients had been admitted to this hospital in the preceding 3 months; 21% had been admitted to a hospital outside of Kenya; and 10% had been admitted to another hospital in Kenya in the previous year. Almost all (97%) had a central venous catheter, 45% had an acute dialysis catheter, 66% had an endotracheal tube, and 34% had a tracheostomy, with 69% receiving mechanical ventilation before C. auris isolation. Most (94%) had urinary catheters, 84% had nasogastric tubes, 91% had received total parenteral nutrition, and 75% had received blood products. All patients received broad-spectrum antibiotics and 49% received an antifungal before C. auris isolation. All-cause in-hospital mortality was 64% for the 28 patients whose outcomes were available. Following implementation of a hand hygiene campaign and improved equipment and environmental disinfection, no further cases were identified. Conclusions: We identified C. auris bloodstream infections associated with high all-cause mortality in a Kenyan hospital ICU. All patients had treatments and procedures suggesting severe underlying illness. Enhanced infection control contained the outbreak.Funding: NoneDisclosures: None


Author(s):  
Diane Meyer ◽  
Elena K. Martin ◽  
Syra Madad ◽  
Priya Dhagat ◽  
Jennifer B. Nuzzo

Abstract Objective: Candida auris infections continue to occur across the United States and abroad, and healthcare facilities that care for vulnerable populations must improve their readiness to respond to this emerging organism. We aimed to identify and better understand challenges faced and lessons learned by those healthcare facilities who have experienced C. auris cases and outbreaks to better prepare those who have yet to experience or respond to this pathogen. Design: Semi-structured qualitative interviews. Setting: Health departments, long-term care facilities, acute-care hospitals, and healthcare organizations in New York, Illinois, and California. Participants: Infectious disease physicians and nurses, clinical and environmental services, hospital leadership, hospital epidemiology, infection preventionists, emergency management, and laboratory scientists who had experiences either preparing for or responding to C. auris cases or outbreaks. Methods: In total, 25 interviews were conducted with 84 participants. Interviews were coded using NVivo qualitative coding software by 2 separate researchers. Emergent themes were then iteratively discussed among the research team. Results: Key themes included surveillance and laboratory capacity, inter- and intrafacility communication, infection prevention and control, environmental cleaning and disinfection, clinical management of cases, and media concerns and stigma. Conclusions: Many of the operational challenges noted in this research are not unique to C. auris, and the ways in which we address future outbreaks should be informed by previous experiences and lessons learned, including the recent outbreaks of C. auris in the United States.


2020 ◽  
Vol 41 (S1) ◽  
pp. s145-s146
Author(s):  
Kelly Walblay ◽  
Tristan McPherson ◽  
Elissa Roop ◽  
David Soglin ◽  
Ann Valley ◽  
...  

Background:Candida auris and carbapenemase-producing organisms (CPO) are multidrug-resistant organisms that can colonize people for prolonged periods and can cause invasive infections and spread in healthcare settings, particularly in high-acuity long-term care facilities. Point-prevalence surveys (PPSs) conducted in long-term acute-care hospitals in the Chicago region identified median prevalence of colonization to be 31% for C. auris and 24% for CPO. Prevalence of C. auris colonization has not been described in pediatric populations in the United States, and limited data exist on CPO colonization in children outside intensive care units. The Chicago Department of Public Health (CDPH) conducted a PPS to assess C. auris and CPO colonization in a pediatric hospital serving high-acuity patients with extended lengths of stay (LOS). Methods: CDPH conducted a PPS in August 2019 in a pediatric hospital with extended LOS to screen for C. auris and CPO colonization. Medical devices (ie, gastrostomy tubes, tracheostomies, mechanical ventilators, and central venous catheters [CVC]) and LOS were documented. Screening specimens consisted of composite bilateral axillae and groin swabs for C. auris and rectal swabs for CPO testing. The Wisconsin State Laboratory of Hygiene tested all specimens. Real-time polymerase chain reaction (PCR) assays were used to detect C. auris DNA and carbapenemase genes: blaKPC, blaNDM, blaVIM, blaOXA-48, and blaIMP (Xpert Carba-R Assay, Cepheid, Sunnyvale, CA). All axillae and groin swabs were processed by PCR and culture to identify C. auris. For CPO, culture was only performed on PCR-positive specimens. Results: Of the 29 patients hospitalized, 26 (90%) had gastrostomy tubes, 24 (83%) had tracheostomies, 20 (69%) required mechanical ventilation, and 3 (10%) had CVCs. Also, 25 (86%) were screened for C. auris and CPO; 4 (14%) lacked parental consent and were not swabbed. Two rectal specimens were unsatisfactory, producing invalid CPO test results. Median LOS was 35 days (range, 1–300 days). No patients were positive for C. auris. From CPO screening, blaOXA-48 was detected in 1 patient sample, yielding a CPO prevalence of 3.4% (1 of 29). No organism was recovered from the blaOXA-48 positive specimen. Conclusions: This is the first documented screening of C. auris colonization in a pediatric hospital with extended LOS. Despite a high prevalence of C. auris and CPOs in adult healthcare settings of similar acuity in the region, C. auris was not identified and CPOs were rare at this pediatric facility. Additional evaluations in pediatric hospitals should be conducted to further understand C. auris and CPO prevalence in this population.Funding: NoneDisclosures: None


2005 ◽  
Vol 26 (1) ◽  
pp. 13-20 ◽  
Author(s):  
François L'Hériteau ◽  
Corinne Alberti ◽  
Yves Cohen ◽  
Gilles Troché ◽  
Pierre Moine ◽  
...  

AbstractObjectives:To evaluate nosocomial infection (NI) surveillance strategies in French ICUs and to identify similar patterns defining subsets within which comparisons can be made.Design:A questionnaire was sent to all French ICUs, and a random sample of nonresponders was interviewed.Participants:Three hundred ninety-five responder ICUs (69%) in France.Results:In 282 ICUs (71%), a dedicated ICU staff member was responsible for infection control activities. The microbiology laboratory was usually in the hospital (90%) and computerized (94%) but issued regular hospital microbiology records in only 48% of cases. Patients receiving mechanical ventilation, central venous catheterization, and urinary catheterization were 90%, 79%, and 60%, respectively. Patients were screened for carriage of mul-tidrug-resistant bacteria on admission and during the stay in 70% and 60% of ICUs, respectively, most often targeting MRSA. Quantitative cultures were used to diagnose ventilator-associated pneumonia (VAP) in 90% of ICUs, including distal specimens in 80% and bronchoscopy specimens in 60%. Quantitative central venous catheter (CVC)-segment cultures were used in 70% of ICUs. All CVCs were cultured routinely in 53% of the ICUs. Despite wide variations in infection control and surveillance strategies, multiple correspondence analysis identified 13 key points (4 structural variables and 9 variables concerning the diagnosis of VAP, the surveillance and diagnosis of catheter-related and urinary tract infections, and the mode of screening of MRSA carriers) that categorize the variability of French ICUs' approaches to NIs.Conclusion:This study revealed profound differences in N1 surveillance strategies across ICUs, indicating a need for caution when using N1 surveillance data for comparisons and benchmarking.


2020 ◽  
Vol 41 (S1) ◽  
pp. s458-s459
Author(s):  
Ishrat Kamal-Ahmed ◽  
Kate Tyner ◽  
Teresa Fitzgerald ◽  
Heather Adele Moulton-Meissner ◽  
Gillian McAllister ◽  
...  

Background: In April 2019, Nebraska Public Health Laboratory identified an NDM-producing Enterobacter cloacae from a urine sample from a rehabilitation inpatient who had recently received care in a specialized unit (unit A) of an acute-care hospital (ACH-A). After additional infections occurred at ACH-A, we conducted a public health investigation to contain spread. Methods: A case was defined as isolation of NDM-producing carbapenem-resistant Enterobacteriaceae (CRE) from a patient with history of admission to ACH-A in 2019. We conducted clinical culture surveillance, and we offered colonization screening for carbapenemase-producing organisms to all patients admitted to unit A since February 2019. We assessed healthcare facility infection control practices in ACH-A and epidemiologically linked facilities by visits from the ICAP (Infection Control Assessment and Promotion) Program. The recent medical histories of case patients were reviewed. Isolates were evaluated by whole-genome sequencing (WGS). Results: Through June 2019, 7 cases were identified from 6 case patients: 4 from clinical cultures and 3 from 258 colonization screens including 1 prior unit A patient detected as an outpatient (Fig. 1). Organisms isolated were Klebsiella pneumoniae (n = 5), E. cloacae (n = 1), and Citrobacter freundii (n = 1); 1 patient had both NDM-producing K. pneumoniae and C. freundii. Also, 5 case patients had overlapping stays in unit A during February–May 2019 (Fig. 2); common exposures in unit A included rooms in close proximity, inhabiting the same room at different times and shared caregivers. One case-patient was not admitted to unit A but shared caregivers, equipment, and devices (including a colonoscope) with other case patients while admitted to other ACH-A units. No case patients reported travel outside the United States. Screening at epidemiologically linked facilities and clinical culture surveillance showed no evidence of transmission beyond ACH-A. Infection control assessments at ACH-A revealed deficiencies in hand hygiene, contact precautions adherence, and incomplete cleaning of shared equipment within and used to transport to/from a treatment room in unit A. Following implementation of recommended infection control interventions, no further cases were identified. Finally, 5 K. pneumoniae of ST-273 were related by WGS including carriage of NDM-5 and IncX3 plasmid supporting transmission of this strain. Further analysis is required to relate IncX3 plasmid carriage and potential transmission to other organisms and sequence types identified in this study. Conclusions: We identified a multiorganism outbreak of NDM-5–producing CRE in an ACH specialty care unit. Transmission was controlled through improved infection control practices and extensive colonization screening to identify asymptomatic case-patients. Multiple species with NDM-5 were identified, highlighting the potential role of genotype-based surveillance.Funding: NoneDisclosures: Muhammad Salman Ashraf reports that he is the principal investigator for a study funded by an investigator-initiated research grant.


2020 ◽  
Vol 41 (S1) ◽  
pp. s76-s77
Author(s):  
Kathleen O'Donnell ◽  
Ellora Karmarkar ◽  
Brendan R Jackson ◽  
Erin Epson ◽  
Matthew Zahn

Background: In February 2019, the Orange County Health Care Agency (OCHCA) identified an outbreak of Candida auris, an emerging fungus that spreads rapidly in healthcare facilities. Patients in long-term acute-care hospitals (LTACHs) and skilled nursing facilities that provide ventilator care (vSNFs) are at highest risk for C. auris colonization. With assistance from the California Department of Public Health and the Centers for Disease Control and Prevention, OCHCA instituted enhanced surveillance, communication, and screening processes for patients colonized with or exposed to C. auris. Method: OCHCA implemented enhanced surveillance by conducting point-prevalence surveys (PPSs) at all 3 LTACHs and all 14 vSNFs in the county. Colonized patients were identified through axilla/groin skin swabbing with C. auris detected by PCR and/or culture. In facilities where >1 C. auris colonized patient was found, PPSs were repeated every 2 weeks to identify ongoing transmission. Retrospective case finding was instituted at 2 LTACHs with a high burden of colonized patients; OCHCA contacted patients discharged after January 1, 2019, and offered C. auris screening. OCHCA tracked the admission or discharge of all colonized patients, and facilities with ongoing transmission were required to report transfers of any patient, regardless of colonization status. OCHCA tracked all patients discharged from facilities with ongoing transmission to ensure that accepting facilities conducted admission surveillance testing of exposed patients and implemented appropriate environmental and contact precautions. Result: From February–October 2019, 192 colonized patients were identified. All 3 LTACHs and 6 of 14 VSNFs had at least 1 C. auris–colonized patient identified on initial PPS, and 2 facilities had ongoing transmission identified on serial PPS. OCHCA followed 96 colonized patients transferred a total of 230 times (an average of 2.4 transfers per patient) (Fig. 1) and 677 exposed patients discharged from facilities with ongoing transmission (Fig. 2). Admission screening of 252 exposed patients on transfer identified 13 (5.2%) C. auris–colonized patients. As of November 1, 2019, these 13 patients were admitted 21 times to a total of 6 acute-care hospitals, 2 LTACHs, and 3 vSNFs. Transferring facilities did not consistently communicate the colonized patient’s status and the requirements for isolation and testing of exposed patients. Conclusion: OCHCA oversight of interfacility transfer, though labor-intensive, improved identification of patients colonized with C. auris and implementation of appropriate environmental and contact precautions, reducing the risk of transmission in receiving healthcare facilities.Funding: NoneDisclosures: None


Sign in / Sign up

Export Citation Format

Share Document