Other Important (and Some Lesser Known) Strategies of Rate Enhancement

Author(s):  
L. K. Doraiswamy

The literature contains examples of several strategies of rate enhancement not covered in the previous chapters. Many of these are essentially strategies for individual reactions with little general appeal. On the other hand, a few are very important, and several others combine two or more strategies. Of these, photochemical and micellar enhancements are as important as the strategies considered earlier in this part. However, in photochemical enhancement, recent studies have shown that the basis of scale-up used so far is questionable (Cassano et al., 1995), and designs based on newer concepts are still in their infancy. In micellar catalysis, despite the advances made, there are few industrial applications. As a result, these are included in this chapter on other strategies. Hydrotropes and supercritical fluids, although “old” with respect to other uses, are emerging as strong contenders for rate enhancement and ease of processing. Hence these two strategies are considered at some length in this chapter. Also included are the use of microwaves and several combinatorial strategies such as PTC with electrochemical, enzymatic, or sonochemical techniques; the use of supercritical fluids in similar combinations; enzymatic reactions in micelles; and PTC reactions in supercritical fluids or membrane reactors. Interaction of light with a chemical species can initiate or enhance a chemical reaction. Reactions of this type are known as photochemical reactions. Of the many distinctive features of photochemistry, the following is particularly noteworthy: in thermal excitation processes, all three forms of energy, electronic, transational, and rotational, are raised to higher levels. In contrast, photoexcitation raises only the electronic energy level which leads to higher selectivity, as exemplified by the photochlorination of the methyl group of toluene without any ring chlorination. Further, photochemical reactions are ecologically clean and require much less aggressive methods than conventional syntheses. Examples of reactions initiated or enhanced by light are many, and a small number are in industrial use, particularly in the production of halogenated hydrocarbons, alkane sulfates, and fine organic chemicals, including vitamins and fragrances. But the potential is enormous.

Author(s):  
Girisha Malhotra ◽  
Shilpa S. Chapadgaonkar

Abstract Background Xylanase is one of the widely applied industrial enzymes with diverse applications. Thermostability and alkali tolerance are the two most desirable qualities for industrial applications of xylanase. In this paper, we reveal the statistical Taguchi optimization strategy for maximization of xylanase production. The important process parameters pH, temperature, concentration of wheat bran, and concentration of yeast extract were optimized using the Taguchi L8 orthogonal array where the 4 factors were considered at 2 levels (high and low). Results The optimized conditions given by model were obtained as follows: (i) pH 6, (ii) culture temperature 35 °C, (iii) concentration of xylan 2% w/v, (iv) concentration of wheat bran 2.5% w/v. The production was scaled upto 2.5 L bioreactor using optimized process parameters. A high xylanase titer of 400 U/ml could be achieved in less than 60 h of culture in the reactor. Conclusion Optimization was successful in achieving about threefold increase in the yield of xylanase. The optimized conditions resulted in a successful scale up and enhancement of xylanase production.


2000 ◽  
Vol 54 (2) ◽  
pp. 197-201 ◽  
Author(s):  
Michael P. Szczepanski ◽  
Augustus W. Fountain

The remote optical monitoring of gaseous contaminants is important for both military and industrial applications. An important parameter for quantifying chemical species and for predicting plume dynamics is the temperature. While in some industrial monitoring situations it may be practical to independently measure the temperature of stack emissions, for compliance monitoring and military chemical reconnaissance a remote optical means of estimating gas plume temperature is required. It was noticed that the band shape of low-resolution spectra of carbon dioxide in equilibrium with an exhaust plume was very sensitive to temperature. Spectra of carbon dioxide were acquired under controlled laboratory conditions in 5° increments from 20 to 200 °C. Various multivariate models were used to predict the temperature. It was found that partial least-squares (PLS) was unable to effectively model the simultaneous changes in amplitude and bandwidth with temperature. However, principal component regression (PCR) was found to be well correlated with temperature and allowed cross-validated prediction within 4% error.


Author(s):  
Raffaele Ciardiello ◽  
Andrea Tridello ◽  
Luca Goglio ◽  
Giovanni Belingardi

In the last decades, the use of adhesives has rapidly increased in many industrial fields. Adhesive joints are often preferred to traditional fasteners due to the many advantages that they offer. For instance, adhesive joints show a better stress distribution compared to the traditional fasteners and high mechanical properties under different loading conditions. Furthermore, they are usually preferred for joining components made of different materials. A wide variety of adhesives is currently available: thermoset adhesives are generally employed for structural joints but recently there has been a significant increment in the use of thermoplastic adhesives, in particular of the hot-melt adhesives (HMAs). HMAs permit to bond a large number of materials, including metal and plastics (e.g., polypropylene, PP), which can be hardly bonded with traditional adhesives. Furthermore, HMAs are characterized by a short open time and, therefore, permit for a quick and easy assembly process since they can be easily spread on the adherend surfaces by means of a hot-melt gun and they offer the opportunity of an ease disassembling process for repair and recycle. For all these reasons, HMAs are employed in many industrial applications and are currently used also for bonding polypropylene and polyolefin piping systems. In the present paper, the dynamic response of single lap joints (SLJ) obtained by bonding together with a polyolefin HMA two polypropylene substrates was experimentally assessed. Quasi-static tests and dynamic tests were carried out to investigate the strain rate effect: dynamic tests were carried out with a modified instrumented impact pendulum. Relevant changes in the joint performance have been put in evidence. Failure modes were finally analysed and compared. A change in the failure mode is experimentally found: in quasi-static tests SLJ failed due to a cohesive failure of the adhesive, whereas in dynamic tests the SLJ failed due to an interfacial failure, with a low energy absorption.


2006 ◽  
Vol 116-117 ◽  
pp. 402-405 ◽  
Author(s):  
Qin Yue Pan ◽  
Stuart Wiesner ◽  
Diran Apelian

The continuous rheoconversion process (CRP) is a novel slurry-on-demand process that was developed at MPI/WPI in 2002. The process is based on a passive liquid mixing technique in which the nucleation and growth of the primary phase are controlled using a specially designed “reactor”. The reactor provides heat extraction, copious nucleation, and forced convection during the initial stage of solidification, thus leading to the formation of globular structures. This paper presents our recent work on the scale-up of the CRP for industrial applications. Specifically, we demonstrate an important application of the CRP to low temperature (low fraction solid) HPDC. In Part I of this paper, we present salient results on microstructural characterization of CRP processed castings vs. conventional die castings.


2015 ◽  
Author(s):  
Pieraugusto Panzalis ◽  
Andrea Deiana ◽  
Sarah Caronni ◽  
Augusto Navone

Marine Protected Areas (MPAs) are acknowledged globally as effective tools for the protection and management of the marine environment; however, to get effective results it is necessary to set up a proper and continuous mapping of the marine territory, in order to gain detailed knowledge of its different aspects. Therefore, the implementation and maintenance of a modern GIS (Geographic Information System) has become an indispensable task for the MPA of Tavolara - Punta Coda Cavallo to collect, aggregate, classify, and track the conducted mapping activities. Between 2011 and 2012 the sea bottom of the MPA was surveyed using different methods: by means of a multi-beam echo sounder and of a side scan sonar, as well as conducting fast scientific scuba divings with re-breathers and underwater position system technologies. High resolution geodatasets, characterized by a significantly high quality in representing and describing the sea bottom and its habitats, were produced in both feature (scale up to 1:1.250) and raster formats (up to 30cm/pixel for sonar images and 1m/pixel for bathymetry) and they currently constitute the basis of the MPA's GIS, including its 3D applications and its web map services for desktop and mobile devices (iPhone & Android). To update the above described geodatasets during time, acquiring new data on the conservation targets considered in monitoring activities, among which the status of P. oceanica meadows is of the most important ones, a long term mapping plan was realized on the basis of an innovative methodology elaborated by the MPA considering both the wideness of the area and the limited funds available at present. The whole MPA was divided in territorial units by means of a regular grid of square cells having a 100m side with the logic of starting the mapping activities from the mainly important areas and then to spread the surveys up to fill the whole mosaic. All the new data acquired with this methodology could then be mixed, compared and indexed within the same cell and/or in the many already available geodatases, starting from those dated 2006 having a regular grid with square cells of 500m per side.


Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 312 ◽  
Author(s):  
Franciele Camacho ◽  
Angela Macedo ◽  
Francisco Malcata

Bioactive compounds, e.g., protein, polyunsaturated fatty acids, carotenoids, vitamins and minerals, found in commercial form of microalgal biomass (e.g., powder, flour, liquid, oil, tablet, or capsule forms) may play important roles in functional food (e.g., dairy products, desserts, pastas, oil-derivatives, or supplements) or feed (for cattle, poultry, shellfish, and fish) with favorable outcomes upon human health, including antioxidant, anti-inflammatory, antimicrobial, and antiviral effects, as well as prevention of gastric ulcers, constipation, anemia, diabetes, and hypertension. However, scale up remains a major challenge before commercial competitiveness is attained. Notwithstanding the odds, a few companies have already overcome market constraints, and are successfully selling extracts of microalgae as colorant, or supplement for food and feed industries. Strong scientific evidence of probiotic roles of microalgae in humans is still lacking, while scarce studies have concluded on probiotic activity in marine animals upon ingestion. Limitations in culture harvesting and shelf life extension have indeed constrained commercial viability. There are, however, scattered pieces of evidence that microalgae play prebiotic roles, owing to their richness in oligosaccharides—hardly fermented by other members of the intestinal microbiota, or digested throughout the gastrointestinal tract of humans/animals for that matter. However, consistent applications exist only in the dairy industry and aquaculture. Despite the underlying potential in formulation of functional food/feed, extensive research and development efforts are still required before microalgae at large become a commercial reality in food and feed formulation.


2006 ◽  
Vol 84 (8) ◽  
pp. 1167-1185 ◽  
Author(s):  
Ian J. Tetlow

The many varied uses of starch in food and industrial applications often requires an understanding of its physicochemical properties and the detailed variations in granule structure that underpin these properties. The ability to manipulate storage starch structures depends on understanding the biosynthetic pathway, and in particular, how the many components of the pathway are coordinated and regulated. This article presents a current overview of starch structure and the known enzymes involved in the synthesis of the granule, with an emphasis on how current knowledge on the regulation of the pathway in cereals and other crops may be applied to the production of different functional starches.


Energy ◽  
2014 ◽  
Vol 77 ◽  
pp. 235-243 ◽  
Author(s):  
Ž. Knez ◽  
E. Markočič ◽  
M. Leitgeb ◽  
M. Primožič ◽  
M. Knez Hrnčič ◽  
...  

2001 ◽  
Vol 56 (2) ◽  
pp. 387-394 ◽  
Author(s):  
A Tuchlenski ◽  
A Beckmann ◽  
D Reusch ◽  
R Düssel ◽  
U Weidlich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document