Surface Properties and Gas Adsorption

Author(s):  
Toshiaki Enoki ◽  
Morinobu Endo ◽  
Masatsugu Suzuki

It is well known that alkali metal binary GICs adsorb gaseous species (H2, N2, Ar, CH4, etc.) physisorptively at low temperatures, where physisorbed gaseous molecules are accommodated in the interstitials of the alkali metal lattice within the graphitic galleries (Lagrange and Hérold, 1975; Lagrange et al., 1972, 1976; Watanabe et al., 1971, 1972, 1973). The capacity for hydrogen adsorption, which is estimated at 144 cm3/g in KC24, for example, is large and comparable to the capacity in other adsorbers such as zeolite or activated charcoal. Interestingly, the physisorption phenomenon in alkali metal GICs has different features from that in conventional adsorbents such as zeolite or activated charcoal; that is, guest molecules in alkali metal GICs are not simply bonded to the adsorbents through weak van der Waals forces without any change in the electronic structures. Here we discuss the gas physisorption phenomenon in alkali metal GICs from general aspects, in relation to their specific features. Then in subsequent sections, we will give details of actual cases. Hydrogen is a typical gaseous molecule adsorbed in alkali metal GICs. Hydrogen physisorption takes place at low temperatures below about 200 K, where hydrogen molecules are accommodated in the graphitic galleries and are not dissociated into atomic hydrogen species. When the temperature is increased to over 200 K, the alkali metal GICs work as catalysts to hydrogen, resulting in the occurrence of hydrogen chemisorption. Hydrogen physisorption will be discussed in Section 8.1.2, hydrogen chemisorption and related issues have been discussed partly in Sections 2.2.1 and 5.4.1 from the viewpoints of structure and electronic properties, and will be discussed again in Section 8.1.2. Figure 8.1 represents the composition dependence of the amount of physisorption of hydrogen molecules in KCm at 77 K (Lagrange and Hérold, 1975). The composition of 1/m = 1/8 corresponds to the stage-1 compound and the composition 1/m = 1/24 to the stage-2 compound; intermediate compositions between 1/8 and 1/24 are considered to have a mixed structure of stage-1 and stage-2 compounds. The stage-1 compound does not adsorb hydrogen at all.

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 127
Author(s):  
YongChao Wang ◽  
YinBo Zhu ◽  
HengAn Wu

The porous characteristics of disordered carbons are critical factors to their performance on hydrogen storage and electrochemical capacitors. Even though the porous information can be estimated indirectly by gas adsorption experiments, it is still hard to directly characterize the porous morphology considering the complex 3D connectivity. To this end, we construct full-atom disordered graphene networks (DGNs) by mimicking the chlorination process of carbide-derived carbons using annealing-MD simulations, which could model the structure of disordered carbons at the atomic scale. The porous characteristics, including pore volume, pore size distribution (PSD), and specific surface area (SSA), were then computed from the coordinates of carbon atoms. From the evolution of structural features, pores grow dramatically during the formation of polyaromatic fragments and sequent disordered framework. Then structure is further graphitized while the PSD shows little change. For the obtained DGNs, the porosity, pore size, and SSA increase with decreasing density. Furthermore, SSA tends to saturate in the low-density range. The DGNs annealed at low temperatures exhibit larger SSA than high-temperature DGNs because of the abundant free edges.


RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 39583-39593 ◽  
Author(s):  
Nguyen Thi Xuan Huynh ◽  
O My Na ◽  
Viorel Chihaia ◽  
Do Ngoc Son

The hydrogen adsorption is most favorable at the hollow site of Co–MIL-88A.


Clay Minerals ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 393-402 ◽  
Author(s):  
Jian Zhao ◽  
Wei Gao ◽  
Zhi-Gang Tao ◽  
Hong-Yun Guo ◽  
Man-Chao He

ABSTRACTKaolinite can be used for many applications, including the underground storage of gases. Density functional theory was employed to investigate the adsorption of hydrogen molecules on the kaolinite (001) surface. The coverage dependence of the adsorption sites and energetics was studied systematically for a wide range of coverage, Θ (from 1/16 to 1 monolayer). The three-fold hollow site is the most stable, followed by the bridge, top-z and top sites. The adsorption energy of H2 decreased with increasing coverage, thus indicating the lower stability of surface adsorption due to the repulsion of neighbouring H2 molecules. The coverage has obvious effects on hydrogen adsorption. Other properties of the H2/kaolinite (001) system, including the lattice relaxation and changes of electronic density of states, were also studied and are discussed in detail.


2021 ◽  
Author(s):  
Adam Sapnik ◽  
Christopher W. Ashling ◽  
Lauren K. Macreadie ◽  
Seok J. Lee ◽  
Tim Johnson ◽  
...  

<div><p>Disordered metal–organic frameworks are emerging as an attractive class of functional materials, however their applications in gas storage and separation have yet to be fully explored. Here, we investigate gas adsorption in the topologically disordered Fe-BTC framework and its crystalline counterpart, MIL‑100. Despite their similar chemistry and local structure, they exhibit very different sorption behaviour towards a range of industrial gases, noble gases and hydrocarbons. Virial analysis reveals that Fe-BTC has enhanced interaction strength with guest molecules compared to MIL‑100. Most notably, we observe striking discrimination between the adsorption of C<sub>3</sub>H<sub>6</sub> and C<sub>3</sub>H<sub>8</sub> in Fe‑BTC, with over a twofold increase in the amount of C<sub>3</sub>H<sub>6</sub> being adsorbed than C<sub>3</sub>H<sub>8</sub>. Thermodynamic selectivity towards a range of industrially relevant binary mixtures is probed using ideal adsorbed solution theory (IAST). Together, this suggests the disordered material may possess powerful separation capabilities that are rare even amongst crystalline frameworks.</p></div>


In a paper called "The Chemical constant of Hydrogen Vapour and the failure of Nernst's Heat Theorem," R. H. Fowler has investigated the vapour pressure of hydrogen crystals at low temperature; taking account of the existence of two sorts of hydrogen molecules, namely, ortho-hydrogen with even rotational quantum numbers and para-hydrogen with odd rotational quantum numbers, which retain their individuality over long periods at very low temperatures. By the use of the classical statistics, he was able to show that at very low temperatures hydrogen, as obtained by cooling hydrogen gas from ordinary temperatures, ought to have very nearly the experimentally observed chemical constant. Since the theory of the specific heat of hydrogen yielded correct values at low temperatures, it followed that at ordinary temperatures also his theory would yield a correct value for the chemical constant. Finally from the form of the partition function for hydrogen gas, Fowler attempted to obtain inferences concerning the validity of Nernst's heat theorem. By the use of the classical statistics fairly accurate results were obtained. But we shall find that when we make use of the Einstein-Bose statistics-the correct statistics for an assembly of hydrogen moleclues-a result will be obtained for the vapour pressure of hydrogen crystals at low temperatures which will furnish a value for the chemical constant of hydrogen in even closer agreement with experiment than Fowler's result.


2015 ◽  
Vol 3 (9) ◽  
pp. 4827-4839 ◽  
Author(s):  
Mali H. Rosnes ◽  
Martin Opitz ◽  
Matthias Frontzek ◽  
Wiebke Lohstroh ◽  
Jan Peter Embs ◽  
...  

We present a comparative study of hydrogen gas adsorption experiments on CPO-27–Cu and –Mn. The initial isosteric heat of adsorption in CPO-27–Cu is low for a material containing open metal sites and in contrast to the other members of the CPO-27 series, including the Mn compound.


Author(s):  
FrÉdÉric Merkt

Molecular-physics aspects of cold chemistry are introduced with the example of few-electron molecules. After a brief overview of general aspects of molecular physics, the solution of the molecular Schrödinger equation is presented based on the Born-Oppenheimer approximation and the subsequent evaluation of adiabatic, nonadiabatic, relativistic and radiative (QED) corrections. Low-temperature chemical phenomena are introduced with the example of ion-molecule reactions, using the classical Langevin model for barrier-free exothermic reactions as reference. Then, methods to generate cold few-electron molecules by supersonic-beam-deceleration methods such as Stark, Zeeman, and Rydberg-Stark decelerations are presented. Two astrophysically important reactions, the reaction between H2 and H2+ forming H3+ and H, a very fast reaction following Langevin-capture going over to quantum-Langevin capture at low temperature, and the radiative association reaction H+ + H forming H2+, a very slow reaction in which quantum effects (shape resonances) become important at low temperatures, are used to illustrate the concepts introduced.


Sign in / Sign up

Export Citation Format

Share Document