The Best Disinfectant

2021 ◽  
pp. 131-134
Author(s):  
Stephen R. Wilk

People have known of the effectiveness of sunlight in helping people recover from illness, and early work on bacteria showed that sunlight could indeed kill micro-organisms. The efficacy of sunlight as a germicidal agent was worked into sanitation designs from the turn of the century. Then it was learned that ultraviolet light with wavelengths shorter than those transmitted by the atmosphere were even more effective at killing germs. Recently SODIS—SOlar DISinfection of contaminated water, a very simple process that uses only ordinary sunlight and no shortwave rays—provides a surprisingly effective, low-tech method for killing harmful microorganisms in water. How can this possibly work?

1966 ◽  
Vol 164 (995) ◽  
pp. 230-245 ◽  

At this Symposium we are remembering and honouring the great and revolutionary discoveries of Gregor Mendel, presented to the world 100 years ago this year, which for the first time expressed the basic phenomena of heredity in a concise, analytical and, above all, numerical form and thus laid the foundation of the science of genetics. However, as the title of this symposium implies, we are not met here merely in adulation of Mendel’s genius but rather to review and discuss the fruits which have now matured on the tree which he planted. I think some of these fruits would seem very strange and incomprehensible to Mendel, for over the last two decades we have witnessed another revolution in genetics as dramatic and as pregnant with new potentialities as that of 100 years ago. The basic ingredients of this revolution were, first, the disclosure of systems of genetic recombination in micro-organisms, and especially in bacteria and their viruses, which enormously increased the resolution of genetic analysis; and, secondly, the elucidation by Watson & Crick, in 1953, of the physico-chemical structure of the genetic material, deoxyribonucleic acid—undoubtedly the most important and provocative biological discovery since Mendel. As a result we are now recapitulating the cytogenetical studies and correlations which marked the turn of the century, but this time the precision and refinement of our tools and techniques have increased more than 1000-fold so that we are looking at genetic behaviour and interaction at the level of molecular structure. In this lecture I would like to discuss what, from the Mendelian viewpoint, must be one of the most bizarre forms of sexual heredity, namely, the process of conjugation and genetic recombination in the bacterium Escherichia coli . My reasons for choosing this rather esoteric topic, apart from personal interest, are three. First, the whole mechanism of sexuality in this organism is mediated and controlled by a new kind of genetic element called the sex factor which, like some temperate bacteriophages, is able to exist in alternative states in the cell, either free in the cytoplasm or as an integral part of the bacterial chromosome, and which can properly be construed as a virus with a novel mode of infectivity, as I hope to show. Secondly, a number of essentially similar elements have recently been discovered in bacteria, masquerading under such different disguises as the genetic determinants of antibiotic substances called colicins or as carriers of transmissible drug resistance, so that the sex factor is far from being a unique entity among the bacteria. Thirdly, genetic interactions occur between the sex factor and the bacterial chromosome which confer great flexibility on this system. Some of the situations which are generated by these interactions mimic those found in the cells of higher organisms so that it is possible to construct plausible, though very speculative, models for the evolution of more stable and highly organized genetic systems.


2013 ◽  
Vol 13 (3) ◽  
pp. 782-789 ◽  
Author(s):  
Bassam Tawabini ◽  
Amjad Khalil ◽  
Basim Abussaud

This study demonstrates the reduction of Escherichia coli bacteria from contaminated water when the water is treated with advanced oxidation processes utilising the following combinations: hydrogen peroxide (H2O2) and ozone (O3), ultraviolet light (UV) and hydrogen peroxide (H2O2), and ultraviolet light (UV) and ozone (O3). Approximately 1 × 108cell/mL of E. coli were spiked into water samples contaminated with 500 ppb of methyl tertiary butyl ether (MTBE) and benzene. Water samples were then treated in a bench-scale photoreactor using 15 W low pressure (LP) and 150 W medium pressure (MP) UV lamps. Hydrogen peroxide at 20, 50 and 100 ppm and ozone at 1, 2 and 5 ppm were used along with the UV irradiation to generate the hydroxyl radicals (.OH) needed to degrade organic contaminants such as MTBE and benzene and most likely destroy bacteria. The results of the study showed that, under the study conditions, no effect of benzene or MTBE was observed on the inactivation rate of the bacteria. Moreover, results showed that the combined effect of the LP 15 W UV lamp with 2 ppm O3 or with 50 ppm H2O2 showed the highest inactivation rate of bacteria within 5 min. The H2O2/O3 process showed high disinfection capability at high dosages of peroxide (50 ppm) and O3 (2 and 5 ppm).


2013 ◽  
Vol 795 ◽  
pp. 483-487
Author(s):  
N.M.N. Azira ◽  
M. Asri Idris ◽  
Dewi Suriyani Che Halin ◽  
M.N.B. Derman ◽  
Mohd Arif Anuar Mohd Salleh

The titanium dioxide (TiO2) is a semiconductor oxide photocatalys, which is chemically and biologically inert but exhibits excellent photolytic activity in the ultraviolet (UV) region. Progress in photocatalytic water disinfection requires understanding both concepts of TiO2 semiconductor as well the biochemistry of microorganisms. The advantage and disadvantage for current water purifications are discussed. Finally, the photocatalytic reactions to water disinfection and detoxification using solar energy.


Author(s):  
L. Reimer

Most information about a specimen is obtained by elastic scattering of electrons, but one cannot avoid inelastic scattering and therefore radiation damage by ionisation as a primary process of damage. This damage is a dose effect, being proportional to the product of lectron current density j and the irradiation time t in Coul.cm−2 as long as there is a negligible heating of the specimen.Therefore one has to determine the dose needed to produce secondary damage processes, which can be measured quantitatively by a chemical or physical effect in the thin specimen. The survival of micro-organisms or the decrease of photoconductivity and cathodoluminescence are such effects needing very small doses (see table).


Author(s):  
Edward D. De-Lamater ◽  
Eric Johnson ◽  
Thad Schoen ◽  
Cecil Whitaker

Monomeric styrenes are demonstrated as excellent embedding media for electron microscopy. Monomeric styrene has extremely low viscosity and low surface tension (less than 1) affording extremely rapid penetration into the specimen. Spurr's Medium based on ERL-4206 (J.Ultra. Research 26, 31-43, 1969) is viscous, requiring gradual infiltration with increasing concentrations. Styrenes are soluble in alcohol and acetone thus fitting well into the usual dehydration procedures. Infiltration with styrene may be done directly following complete dehydration without dilution.Monomeric styrenes are usually inhibited from polymerization by a catechol, in this case, tertiary butyl catechol. Styrene polymerization is activated by Methyl Ethyl Ketone peroxide, a liquid, and probably acts by overcoming the inhibition of the catechol, acting as a source of free radical initiation.Polymerization is carried out either by a temperature of 60°C. or under ultraviolet light with wave lengths of 3400-4000 Engstroms; polymerization stops on removal from the ultraviolet light or heat and is therefore controlled by the length of exposure.


Author(s):  
G. F. Rempfer

In photoelectron microscopy (PEM), also called photoemission electron microscopy (PEEM), the image is formed by electrons which have been liberated from the specimen by ultraviolet light. The electrons are accelerated by an electric field before being imaged by an electron lens system. The specimen is supported on a planar electrode (or the electrode itself may be the specimen), and the accelerating field is applied between the specimen, which serves as the cathode, and an anode. The accelerating field is essentially uniform except for microfields near the surface of the specimen and a diverging field near the anode aperture. The uniform field forms a virtual image of the specimen (virtual specimen) at unit lateral magnification, approximately twice as far from the anode as is the specimen. The diverging field at the anode aperture in turn forms a virtual image of the virtual specimen at magnification 2/3, at a distance from the anode of 4/3 the specimen distance. This demagnified virtual image is the object for the objective stage of the lens system.


Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


Sign in / Sign up

Export Citation Format

Share Document