Biotechnology with carnivorous plants

Author(s):  
Laurent Legendre ◽  
Douglas W. Darnowski

Several carnivorous plant families have been a source of medicine for centuries in many parts of the world. Research into their active ingredients have revealed that they include naphthoquinones, flavonoids, phenolic acid derivatives, goodyerosides, iridoids, and phenylpropanoids. Many aspects of their industrial production have been optimized, including plant elicitation, plant genetic modification, and plant in vitro culture to limit the collect of wild material. The currently most active biotechnological developments are related directly to their carnivorous nature. These include the heterologous production of therapeutic polypeptides by carnivorous plant secretory glands; and the creation of bio-inspired engineered products based on the snap-buckling mechanism of trap closure of the Venus’ fly trap, the internal nano-structures of the Drosera mucilage, and the physical properties of the slippery zone of the Nepenthes pitcher with applications in the textile, automobile, aeronautics, architecture, and medical industries.

2021 ◽  
Vol 9 ◽  
Author(s):  
Xiuxiang Lu ◽  
Yanjiang Zhang ◽  
Wenge Zhang ◽  
Huan Wang ◽  
Jun Zhang ◽  
...  

Chemical investigation of an endophytic fungus Diaporthe foeniculina SCBG-15, led to the isolation of eight new cyclohexanone derivatives, foeniculins A–H (1–8) and three new phenolic acid derivatives, foeniculins I–K (9–11). Their structures were extensively established on the basis of 1H and 13C NMR spectra together with COSY, HSQC, HMBC, and NOESY experiments. The absolute configurations were confirmed by quantum chemical ECD calculations and single-crystal X-ray diffractions. Moreover, the in vitro cytotoxic and antibacterial activities of isolated compounds 1–11 were also evaluated.


2002 ◽  
Vol 36 (6) ◽  
pp. 711-716 ◽  
Author(s):  
Paul Cos ◽  
Padinchare Rajan ◽  
Irina Vedernikova ◽  
Mario Calomme ◽  
Luc Pieters ◽  
...  

2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1278-1285
Author(s):  
Mohamed Yafout ◽  
Amine Ousaid ◽  
Ibrahim Sbai El Otmani ◽  
Youssef Khayati ◽  
Amal Ait Haj Said

The new SARS-CoV-2 belonging to the coronaviruses family has caused a pandemic affecting millions of people around the world. This pandemic has been declared by the World Health Organization as an international public health emergency. Although several clinical trials involving a large number of drugs are currently underway, no treatment protocol for COVID-19 has been officially approved so far. Here we demonstrate through a search in the scientific literature that the traditional Moroccan pharmacopoeia, which includes more than 500 medicinal plants, is a fascinating and promising source for the research of natural molecules active against SARS-CoV-2. Multiple in-silico and in-vitro studies showed that some of the medicinal plants used by Moroccans for centuries possess inhibitory activity against SARS-CoV or SARS-CoV-2. These inhibitory activities are achieved through the different molecular mechanisms of virus penetration and replication, or indirectly through stimulation of immunity. Thus, the potential of plants, plant extracts and molecules derived from plants that are traditionally used in Morocco and have activity against SARS-CoV-2, could be explored in the search for a preventive or curative treatment against COVID-19. Furthermore, safe plants or plant extracts that are proven to stimulate immunity could be officially recommended by governments as nutritional supplements.


Author(s):  
Lara Bittmann

On December 31, 2019, WHO was informed of cases of pneumonia of unknown cause in Wuhan City, China. A novel coronavirus was identified as the cause by Chinese authorities on January 7, 2020 and was provisionally named "2019-nCoV". This new Coronavirus causes a clinical picture which has received now the name COVID-19. The virus has spread subsequently worldwide and was explained on the 11th of March, 2020 by the World Health Organization to the pandemic.


Author(s):  
Ekta Shirbhate ◽  
Preeti Patel ◽  
Vijay K Patel ◽  
Ravichandran Veerasamy ◽  
Prabodh C Sharma ◽  
...  

: The novel coronavirus disease-19 (COVID-19), a global pandemic that emerged from Wuhan, China has today travelled all around the world, so far 216 countries or territories with 21,732,472 people infected and 770,866 deaths globally (as per WHO COVID-19 update dated August 18, 2020). Continuous efforts are being made to repurpose the existing drugs and develop vaccines for combating this infection. Despite, to date, no certified antiviral treatment or vaccine prevails. Although, few candidates have displayed their efficacy in in vitro studies and are being repurposed for COVID-19 treatment. This article summarizes synthetic and semi-synthetic compounds displaying potent activity in their clinical experiences or studies against COVID-19 and also focuses on mode of action of drugs being repositioned against COVID-19.


2020 ◽  
Vol 16 ◽  
Author(s):  
Lucas da Silva Santos ◽  
Matheus Fillipe Langanke de Carvalho ◽  
Ana Claudia de Souza Pinto ◽  
Amanda Luisa da Fonseca ◽  
Julio César Dias Lopes ◽  
...  

Background: Malaria greatly affects the world health, having caused more than 228 million cases only in 2018. The emergence of drug resistance is one of the main problems in its treatment, demonstrating the urge for the development of new antimalarial drugs. Objective: Synthesis and in vitro antiplasmodial evaluation of triazole compounds derived from isocoumarins and a 3,4- dihydroisocoumarin. Method: The compounds were synthesized in 4 to 6-step reactions with the formation of the triazole ring via the Copper(I)-catalyzed 1,3-dipolar cycloaddition between isocoumarin or 3,4-dihydroisocoumarin azides and terminal alkynes. This key reaction provided compounds with an unprecedented connection of isocoumarin or 3,4-dihydroisocoumarin and the 1,2,3-triazole ring. The products were tested for their antiplasmodial activity against a Plasmodium falciparum chloroquine resistant and sensitive strains (W2 and 3D7, respectively). Results: Thirty-one substances were efficiently obtained by the proposed routes with an overall yield of 25-53%. The active substances in the antiplasmodial test displayed IC50 values ranging from 0.68-2.89 μM and 0.85-2.07 μM against W2 and 3D7 strains, respectively.


2020 ◽  
Vol 10 ◽  
Author(s):  
Navadha Bhatt ◽  
Navabha Joshi ◽  
Kapil Ghai ◽  
Om Prakash

Background: The Lamiaceae (Labiatae) is one of the most diverse and widespread plant families’ in terms of ethno medicine and its medicinal value is based on the volatile oils concentration. This family is important for flavour, fragrance and medicinal properties. Manyplants belonging to this family have indigenous value. Method: The essential oil of Plectranthus gerardianusBenth. (Lamiaceae), was analysed by GC and GC-MS analysis, while the major component was isolated and conformed by NMR spectroscopy. Result: The oil was found to be rich in oxygenated monoterpenes, which contribute around 62% of the total oil. The major components identified were fenchone (22.90%) and carvenone oxide (16.75%), besides other mono and sesquiterpenoids. The in-vitro antimicrobial activity of essential oil was tested against three gram negative bacteria viz. Pasteurellamultocida, Escherichia coli, and Salmonella enterica, two gram positive bacteria viz. Staphylococcus aureus and Bacillus subtilis and two fungi viz. Candida albicans and Aspergillusflavus. The antimicrobial activity of the oil was also compared to the antimicrobial activity of leaf essential oil of another Himalayan plant viz. Nepetacoerulescens. Conclusion: The oil showed in-vitro antimicrobial activity against all the microbial strains and can lessen the ever-growing demand of potentially hazardous antibiotics for treatment.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1076
Author(s):  
Anne Gégout Petit ◽  
Hélène Jeulin ◽  
Karine Legrand ◽  
Nicolas Jay ◽  
Agathe Bochnakian ◽  
...  

The World Health Organisation recommends monitoring the circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We investigated anti–SARS-CoV-2 total immunoglobulin (IgT) antibody seroprevalence and in vitro sero-neutralization in Nancy, France, in spring 2020. Individuals were randomly sampled from electoral lists and invited with household members over 5 years old to be tested for anti–SARS-CoV-2 (IgT, i.e., IgA/IgG/IgM) antibodies by ELISA (Bio-rad); the sero-neutralization activity was evaluated on Vero CCL-81 cells. Among 2006 individuals, the raw seroprevalence was 2.1% (95% confidence interval 1.5 to 2.9), was highest for 20- to 34-year-old participants (4.7% (2.3 to 8.4)), within than out of socially deprived area (2.5% vs. 1%, p = 0.02) and with than without intra-family infection (p < 10−6). Moreover, 25% of participants presented at least one COVID-19 symptom associated with SARS-CoV-2 positivity (p < 10−13), with highly discriminant anosmia or ageusia (odds ratio 27.8 [13.9 to 54.5]); 16.3% (6.8 to 30.7) of seropositive individuals were asymptomatic. Positive sero-neutralization was demonstrated in vitro for 31/43 seropositive subjects. Regarding the very low seroprevalence, a preventive effect of the lockdown in March 2020 can be assumed for the summer, but a second COVID-19 wave, as expected, could be subsequently observed in this poorly immunized population.


2021 ◽  
Vol 22 (12) ◽  
pp. 6269
Author(s):  
Anna Nowak ◽  
Paula Ossowicz-Rupniewska ◽  
Rafał Rakoczy ◽  
Maciej Konopacki ◽  
Magdalena Perużyńska ◽  
...  

Bacterial cellulose membranes (BCs) are becoming useful as a drug delivery system to the skin. However, there are very few reports on their application of plant substances to the skin. Komagataeibacter xylinus was used for the production of bacterial cellulose (BC). The BC containing 5% and 10% ethanolic extract of Epilobium angustifolium (FEE) (BC-5%FEE and BC-10%FEE, respectively) were prepared. Their mechanical, structural, and antioxidant properties, as well as phenolic acid content, were evaluated. The bioavailability of BC-FESs using mouse L929 fibroblasts as model cells was tested. Moreover, in vitro penetration through the pigskin of the selected phenolic acids contained in FEE and their accumulation in the skin after topical application of BC-FEEs was examined. The BC-FEEs were characterized by antioxidant activity. The BC-5% FEE showed relatively low toxicity to healthy mouse fibroblasts. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), 3-hydroxybenzoic acid (3-HB), and caffeic acid (CA) found in FEE were also identified in the membranes. After topical application of the membranes to the pigskin penetration of some phenolic acid and other antioxidants through the skin as well as their accumulation in the skin was observed. The bacterial cellulose membrane loaded by plant extract may be an interesting solution for topical antioxidant delivery to the skin.


Sign in / Sign up

Export Citation Format

Share Document