phenolic acid derivatives
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 2)

Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Evangelos Axiotis ◽  
Apostolis Angelis ◽  
Lemonia Antoniadi ◽  
Eleftherios A. Petrakis ◽  
Leandros A. Skaltsounis

Cymbidium is one of the most popular genera in Orchidaceae family, commercialized either as loose flowers or as potted plants in floriculture worldwide. The non-marketable parts are typically discarded (e.g., unsuitable flowers, leaves, pseudobulbs, roots), generating an enormous quantity of unutilized biomass. The above by-products were studied through phytochemical analysis and investigated for their dermo-cosmetic potential. The initial antioxidant, anti-tyrosinase, anti-elastase, and anti-collagenase assays of the total extracts indicated that the pseudobulb and root ethyl acetate extracts were the most potent. Those extracts were then submitted to chromatographic separation leading to the isolation of 16 secondary metabolites (four phenanthrenes, three 1,4-phenanthrenquinones, three dibenzyls, two phenolic acid derivatives, two sterols, one dehydrodiconiferyl alcohol derivative, and one simple phenolic compound), including 6-hydroxy-5,7-dimethoxy-1,4-phenanthrenequinone (cymbisamoquinone), which was identified as a new natural product. In parallel, 48 metabolites were identified by UPLC-HRMS analysis of the extracts. The biological evaluation of the isolated compounds revealed that gigantol and tristin present important anti-tyrosinase activity, while bulbophyllanthrin, 3-hydroxy-2,4,7-trimethoxy-phenanthrene, marylaurencinol A, 5-hydroxy-2-methoxy-1,4-phenanthrenequinone, and ephemeranthroquinone B show dose-dependent anti-collagenase activity. In contrast to isolated metabolites, which may act selectively on specific enzymes, the initial total extracts exhibited inhibitory activity against tyrosinase, elastase, and collagenase enzymes, thus showing better prospects for use in dermo-cosmetic formulations.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1738
Author(s):  
Deepak Timalsina ◽  
Hari Prasad Devkota

Eclipta prostrata (L.) L. (Syn.: Eclipta alba (L.) Hassak, Family: Asteraceae) is an important medicinal plant in the tropical and subtropical regions. It is widely used in treating various diseases of skin, liver and stomach in India, Nepal, Bangladesh, and other countries. The main aim of this review was to collect and analyze the available information on traditional uses, phytoconstituents, and biological activities of E. prostrata. The scientific information was collected from the online bibliographic databases such as Scopus, MEDLINE/PubMed, Google Scholar, SciFinder, etc. and books and proceedings. The active phytochemicals were coumestan derivatives, phenolic acid derivatives, flavonoids, triterpenoid and steroid saponins, substituted thiophenes, etc. Various extracts and isolated compounds of E. prostrata showed a wide range of biological activities such as antimicrobial, anticancer, hepatoprotective, neuroprotective and hair growth promoting activities. Relatively a few studies have been performed to reveal the exact phytoconstituents responsible for their corresponding pharmacological activities. Future studies should focus on detailed mechanism based studies using animal models and clinical studies.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6403
Author(s):  
Ana Miklavčič Višnjevec ◽  
Paul W. Baker ◽  
Kelly Peeters ◽  
Matthew Schwarzkopf ◽  
Dominik Krienke ◽  
...  

The conversion of raw fruits and vegetables, including tomatoes into processed food products creates side streams of residues that can place a burden on the environment. However, these processed residues are still rich in bioactive compounds and in an effort to valorize these materials in tomato by-product streams, the main aim of this study is to extract proteins and identify the main phenolic compounds present in tomato pomace (TP), peel and skins (TPS) by HPLC-DAD-ESI-QTOF. Forty different phenolic compounds were identified in the different tomato extracts, encompassing different groups of phenolic compounds, including derivatives of simple phenolic acid derivatives, hydroxycinnamoylquinic acid, flavones, flavonones, flavonol, and dihydrochalcone. In the crude protein extract (TPE) derived from tomatoes, most of these compounds were still present, confirming that valuable phenolic compounds were not degraded during food processing of these co-product streams. Moreover, phenolic compounds present in the tomato protein crude extract could provide a valuable contribution to the required daily intake of phenolics that are usually supplied by consuming fresh vegetables and fruits.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiuxiang Lu ◽  
Yanjiang Zhang ◽  
Wenge Zhang ◽  
Huan Wang ◽  
Jun Zhang ◽  
...  

Chemical investigation of an endophytic fungus Diaporthe foeniculina SCBG-15, led to the isolation of eight new cyclohexanone derivatives, foeniculins A–H (1–8) and three new phenolic acid derivatives, foeniculins I–K (9–11). Their structures were extensively established on the basis of 1H and 13C NMR spectra together with COSY, HSQC, HMBC, and NOESY experiments. The absolute configurations were confirmed by quantum chemical ECD calculations and single-crystal X-ray diffractions. Moreover, the in vitro cytotoxic and antibacterial activities of isolated compounds 1–11 were also evaluated.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 334
Author(s):  
Elisabetta Bigagli ◽  
Mario D’Ambrosio ◽  
Lorenzo Cinci ◽  
Alberto Niccolai ◽  
Natascia Biondi ◽  
...  

In this study, we compared the effects of a Tisochrysis lutea (T. lutea) F&M-M36 methanolic extract with those of fucoxanthin (FX) at equivalent concentration, on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The T. lutea F&M-M36 methanolic extract contained 4.7 mg of FX and 6.22 mg of gallic acid equivalents of phenols per gram. HPLC analysis revealed the presence of simple phenolic acid derivatives. The T. lutea F&M-M36 extract exhibited a potent and concentration-dependent inhibitory activity against COX-2 dependent PGE2 production compared to FX alone. Compared to LPS, T. lutea F&M-M36 extract and FX reduced the expression of IL-6 and of Arg1 and enhanced that of IL-10 and of HO-1; T. lutea F&M-M36 extract also significantly abated the expression of NLRP3, enhanced mir-223 expression and reduced that of mir-146b, compared to LPS (p < 0.05). These findings indicate that T. lutea F&M-M36 methanolic extract has a peculiar anti-inflammatory activity against COX-2/PGE2 and NLRP3/mir-223 that might be attributable to the known anti-inflammatory effects of simple phenolic compounds found in the extract that may synergize with FX. Our data suggest that T. lutea F&M-M36 may serve as a source of anti-inflammatory compounds to be further evaluated in in vivo models of inflammation.


2021 ◽  
Vol 17 ◽  
Author(s):  
Tamás Hofmann ◽  
Eszter Visi-Rajczi ◽  
Levente Albert

Background: Due to their ecological significance and timber value, Quercus species are especially important in Hungary. Nevertheless, the leaves of these species lack a dedicated utilization field and are considered a waste biomass. Materials and Methods: The present study comprehensively analyses three selected oak species (Q. petraea, Q. pubescens, Q. cerris) native to Hungary to assess their antioxidant capacity (FRAP, ABTS, DPPH) and provide information on their polyphenol pool using state-of-the-art liquid chromatographic/tandem mass spectrometric technique. To the best of our knowledge, no such investigation has yet been conducted for the assigned species. Results: According to the results, the antioxidant capacity of the three species’ leaves are roughly equal. Altogether, 109 compounds have been tentatively identified and described, including phenolic acid derivatives, tannins, flavonoid glycosides, and catechins. Compared to other oak leaf samples and other types of plant tissues, the investigated samples contained a large number (24) of acylated polyphenols. Conclusion: The recent findings on the excellent antioxidant and antibacterial properties of acylated polyphenols suggest that the investigated samples could also be beneficial to human health, requiring further analysis.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 320
Author(s):  
Kengo Hori ◽  
Takashi Watanabe ◽  
Hari Prasad Devkota

Cardiocrinum cordatum (Thunb.) Makino (Family: Liliaceae), commonly known as ‘Ubayuri’, is native to Japan and some islands in the Russian Far East. It has high value as food, medicinal, and ornamental species. The aim of this study was to isolate and characterize the main chemical constituents of the leaves of C. cordatum. A total of 19 compounds, namely caffeic acid (1), caffeic acid methyl ester (2), caffeic acid β-glucopyranosyl ester (3), caffeic acid 4-O-β-glucopyranoside (4), ferulic acid (5), isoferulic acid (6), protocatechuic acid (7), syringic acid (8), 2,6-dimethoxy-p-hydroquinone 1-O-β-glucopyranoside (9), esculetin (10), taxifolin (11), quercetin 3-O-(6-O-α-rhamnopyranosyl)β-glucopyranoside-7-O-β-rhamnopyranoside (12), 2,7-dimethyl-2,4-diene-deca-α,ω-diacid β-glucopyranoside (13), 4-[formyl-5-(methoxymethyl)-1H-pyrrol-1-yl]butanoic acid (14), (3Z)-3-hexenyl β-glucopyranoside (15), tryptophan (16), adenine (17), adenosine (18), and 2-deoxyadenosine (19) were isolated using various chromatographic methods. The structures of isolated compounds were elucidated on the basis of their NMR spectroscopic data. All these compounds were isolated for the first time from the genus Cardiocrinum. Phenolic acid derivatives and flavonoids can be considered as chemotaxonomic markers in the leaves of Cardiocrinum species.


2021 ◽  
Vol 14 (2) ◽  
pp. 102
Author(s):  
Kandasamy Saravanakumar ◽  
SeonJu Park ◽  
Anbazhagan Sathiyaseelan ◽  
Kil-Nam Kim ◽  
Su-Hyeon Cho ◽  
...  

In this study, the methanolic extract from seeds of Gardenia jasminoides exhibited strong antioxidant and enzyme inhibition activities with less toxicity to NIH3T3 and HepG2 cells at the concentration of 100 µg/mL. The antioxidant activities (DPPH and ABTS), α-amylase, and α-glucosidase inhibition activities were found higher in methanolic extract (MeOH-E) than H2O extract. Besides, 9.82 ± 0.62 µg and 6.42 ± 0.26 µg of MeOH-E were equivalent to 1 µg ascorbic acid for ABTS and DPPH scavenging, respectively while 9.02 ± 0.25 µg and 6.52 ± 0.15 µg of MeOH-E were equivalent to 1 µg of acarbose for inhibition of α-amylase and α-glucosidase respectively. Moreover, the cell assay revealed that the addition of MeOH-E (12.5 µg/mL) increased about 37% of glucose uptake in insulin resistant (IR) HepG2 as compared to untreated IR HepG2 cells. The LC- MS/MS and GC-MS analysis of MeOH-E revealed a total of 54 compounds including terpenoids, glycosides, fatty acid, phenolic acid derivatives. Among the identified compounds, chlorogenic acid and jasminoside A were found promising for anti-diabetic activity revealed by molecular docking study and these molecules are deserving further purification and molecular analysis.


2021 ◽  
Author(s):  
Alina Bock ◽  
Ulrike Steinhäuser ◽  
Stephan Drusch

AbstractProteins are able to stabilize dispersed food systems due to their amphiphilic nature, acting as emulsifiers. Their interfacial properties can be influenced by different methods, including the formation of protein-phenol nanocomplexes. In this study, the interfacial behavior of phenolic compounds and protein-phenol nanocomplexes was first characterized according to the oil-water partitioning behavior of phenolic acid derivatives according to their molecular structure and its impact on interfacial tension. The influence of the phenolic compounds on protein film formation and its properties by dilatational rheology was then evaluated. The most phenolic acid derivatives are predominantly present in the aqueous phase. Despite their hydrophobic benzene body, weak interfacial activity was observed depending on their chemical structure. This result supports possible protein-phenol nanocomplex formation in the aqueous phase and possible interactions at the oil-water interface. Protein-phenol nanocomplexes showed decreased interfacial adsorption properties and decreased viscoelastic interfacial behavior, depending on the expansion of the delocalized π-electrons in the phenol.


Sign in / Sign up

Export Citation Format

Share Document