‘Ruins’ of the Forest Social Complexity and Tropical Cities

Author(s):  
Patrick Roberts

The above quote from a recent Hollywood film presentation of Colonel Percival Fawcett’s obsessive early twentieth-century search for the remains of the Lost City of Z (Gray, 2016) highlights the effort that it has taken to convince the academic world and the public alike that large urban forms can be developed in tropical forest settings. While the film, and the book by David Grann (2009) upon which it was based, grossly overplay the exploration credentials, respect for Indigenous peoples, and scientific abilities of Colonel Fawcett (Hemming, 2017), this quote encapsulates the difficult working conditions and environmental determinism in western thought that have led to perceptions of ‘impossibility’ of extensive settlements and social complexity in tropical forests. Beyond searches for debated ‘lost’ cities, even where the clear ruins of ancient urban sites have been found in tropical forests, as with the Classic Maya in North and Central America and the Khmer Empire in Southeast Asia, their collapse has been seen as almost inevitable given necessary forest clearance, soil erosion, and population pressure on these delicate environments (Webster, 2002; Diamond, 2005; Chen et al., 2014; Lentz et al., 2014). In particular, the intensive agriculture seen as necessary to fuel the ‘urban revolution’ (Childe, 1950) and the development of cities and elite structures familiar to most archaeological definitions of cities (Adams, 1981; Postgate, 1992), has been considered impossible on the fragile, low nutrient soils of tropical forest habitats (Meggers, 1954, 1971, 1977, 1987). Other, less-discussed threats include natural disasters, such as mudslides and mass-flooding, that continue to trouble tropical regions prone to high annual or seasonal rainfall (Larsen, 2017). Nevertheless, new methodologies and theoretical shifts are highlighting the clear emergence of social complexity and extensive human populations prior to the arrival of European settlers in many of the world’s tropical forest settings. Here, I review the growing dataset of past ‘urban’ forms in tropical forests. As with ‘the origins of agriculture’ in Chapter 5, tropical forests have been crucial in demonstrating that traditional ideas of ‘urbanism’ in archaeology–namely ‘compact’, bounded, and dense populations documented in early Mesopotamia and the Mediterranean, and that dominate European thought—do not capture the whole wealth of ‘urban’ diversity and settlement networks that began to develop from the Middle Holocene.

2020 ◽  
Vol 9 (8) ◽  
pp. e698986851
Author(s):  
Risjunardi Damanik

This article has the objective to overview literature on the topic of the distribution of Malesia mosses which is closely related to tropical forest. This diversity and distribution is an important concern because of the increasing rate of destruction of tropical forests throughout region. Using theoretical literature method, the author summarizes mosses’ wide geographical distribution covering the tropical regions of Asia, the Pacific and Australia. Some types of liverworts do not spread west across the Wallace line. A review of liverworts literature has been conducted but a review specifically on the moss diversity in Melasia region is limited. Thus, this review includes a brief introduction to mosses and then focuses on the following topics; the characteristics of mosses; development of moss plants; classification of moss plants; benefits of moss plants and moss diversity in the Malesia region.


Author(s):  
Patrick Roberts

Popular philosophical associations of tropical forests, and forests in general, with an inherent ancestral state, away from the stresses, pollution, and technosphere of modern life, are nicely summarized by Murakami’s quote above (2002). Given the probable origins of the hominin clade in tropical forests, this quote is also apt from an evolutionary standpoint. Yet, somewhat surprisingly, tropical forests have frequently been considered impenetrable barriers to the global migration of Homo sapiens (Gamble, 1993; Finlayson, 2014). As was the case with the focus on ‘savannastan’ in facilitating the Early Pleistocene expansion of Homo erectus discussed in Chapter 3 (Dennell and Roebroeks, 2005), the movement of H. sapiens into tropical regions such as South Asia, Southeast Asia, and Australia has tended to be linked to Late Pleistocene periods when forests contracted and grasslands expanded (Bird et al., 2005; Boivin et al., 2013). Alternative narratives have focused on the importance of coastal adaptations as providing a rich source of protein and driving cultural and technological complexity, as well as mobility, in human populations during the Middle and Late Pleistocene (Mellars, 2006; Marean, 2016). The evidence of early art and symbolism at coastal cave sites such as Blombos in South Africa (Henshilwood et al., 2002, 2011; Vanhaeren et al., 2013) and Taforalt in North Africa (Bouzouggar et al., 2007) is often used to emphasize the role of marine habitats in the earliest cultural emergence of our species. Indeed, for the last decade, the pursuit of rich marine resources (Mellars, 2005, 2006) has been a popular explanation for the supposed rapidity of the ‘southern dispersal route’, whereby humans left Africa 60 ka, based on genetic information (e.g., Macaulay et al., 2005), to reach the Pleistocene landmass that connected Australia and New Guinea (Sahul) by c. 65 ka (Clarkson et al., 2017). In both of these cases, the coast or expanses of grassland have been seen as homogeneous corridors, facilitating rapid expansion without novel adaptation.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 734
Author(s):  
Xiankai Lu ◽  
Qinggong Mao ◽  
Zhuohang Wang ◽  
Taiki Mori ◽  
Jiangming Mo ◽  
...  

Anthropogenic elevated nitrogen (N) deposition has an accelerated terrestrial N cycle, shaping soil carbon dynamics and storage through altering soil organic carbon mineralization processes. However, it remains unclear how long-term high N deposition affects soil carbon mineralization in tropical forests. To address this question, we established a long-term N deposition experiment in an N-rich lowland tropical forest of Southern China with N additions such as NH4NO3 of 0 (Control), 50 (Low-N), 100 (Medium-N) and 150 (High-N) kg N ha−1 yr−1, and laboratory incubation experiment, used to explore the response of soil carbon mineralization to the N additions therein. The results showed that 15 years of N additions significantly decreased soil carbon mineralization rates. During the incubation period from the 14th day to 56th day, the average decreases in soil CO2 emission rates were 18%, 33% and 47% in the low-N, medium-N and high-N treatments, respectively, compared with the Control. These negative effects were primarily aroused by the reduced soil microbial biomass and modified microbial functions (e.g., a decrease in bacteria relative abundance), which could be attributed to N-addition-induced soil acidification and potential phosphorus limitation in this forest. We further found that N additions greatly increased soil-dissolved organic carbon (DOC), and there were significantly negative relationships between microbial biomass and soil DOC, indicating that microbial consumption on soil-soluble carbon pool may decrease. These results suggests that long-term N deposition can increase soil carbon stability and benefit carbon sequestration through decreased carbon mineralization in N-rich tropical forests. This study can help us understand how microbes control soil carbon cycling and carbon sink in the tropics under both elevated N deposition and carbon dioxide in the future.


Author(s):  
Nicholas Johnson ◽  
Mar Fernández de Marco ◽  
Armando Giovannini ◽  
Carla Ippoliti ◽  
Maria Danzetta ◽  
...  

Mosquito-borne viruses are the cause of some of the greatest burdens to human health worldwide, particularly in tropical regions where both human populations and mosquito numbers are abundant. Due to a combination of anthropogenic change, including the effects on global climate and wildlife migration there is strong evidence that temperate regions are undergoing repeated introduction of mosquito-borne viruses and the re-emergence of viruses that previously were not detected by surveillance. In Europe, the repeated introductions of West Nile and Usutu viruses have been associated with bird migration from Africa, whereas the autochthonous transmission of chikungunya and dengue viruses has been driven by a combination of invasive mosquitoes and rapid transcontinental travel by infected humans. In addition to an increasing number of humans at risk, livestock and wildlife, are also at risk of infection and disease. This in turn can affect international trade and species diversity, respectively. Addressing these challenges requires a range of responses both at national and international level. Increasing the understanding of mosquito-borne transmission of viruses and the development of rapid detection methods and appropriate therapeutics (vaccines / antivirals) all form part of this response. The aim of this review is to consider the range of mosquito-borne viruses that threaten public health in Europe and the eastern Mediterranean, and the national response of a number of countries facing different levels of threat.


2019 ◽  
Vol 5 (10) ◽  
pp. eaax2546 ◽  
Author(s):  
Sean L. Maxwell ◽  
Tom Evans ◽  
James E. M. Watson ◽  
Alexandra Morel ◽  
Hedley Grantham ◽  
...  

Intact tropical forests, free from substantial anthropogenic influence, store and sequester large amounts of atmospheric carbon but are currently neglected in international climate policy. We show that between 2000 and 2013, direct clearance of intact tropical forest areas accounted for 3.2% of gross carbon emissions from all deforestation across the pantropics. However, full carbon accounting requires the consideration of forgone carbon sequestration, selective logging, edge effects, and defaunation. When these factors were considered, the net carbon impact resulting from intact tropical forest loss between 2000 and 2013 increased by a factor of 6 (626%), from 0.34 (0.37 to 0.21) to 2.12 (2.85 to 1.00) petagrams of carbon (equivalent to approximately 2 years of global land use change emissions). The climate mitigation value of conserving the 549 million ha of tropical forest that remains intact is therefore significant but will soon dwindle if their rate of loss continues to accelerate.


2016 ◽  
Vol 6 (1) ◽  
pp. 1-12
Author(s):  
Tilak Prasad Gautam ◽  
Tej Narayan Mandal

The disappearance of global tropical forests due to deforestation and forest degradation has reduced the biodiversity and carbon sequestration capacity. In these contexts, present study was carried out to understand the species composition and density in the undisturbed and disturbed stands of moist tropical forest located in Sunsari district of eastern Nepal. Study revealed that the forest disturbance has reduced the number of tree species by 33% and tree density by 50%. In contrary, both number and density of herb and shrub species have increased with forest disturbance.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
J. A. Pinedo-Escatel ◽  
G. Moya-Raygoza ◽  
C. H. Dietrich ◽  
J. N. Zahniser ◽  
L. Portillo

Tropical forests cover 7% of the earth's surface and hold 50% of known terrestrial arthropod species. Alarming insect declines resulting from human activities have recently been documented in temperate and tropical ecosystems worldwide, but reliable data from tropical forests remain sparse. The sap-sucking tribe Athysanini is one herbivore group sensitive to anthropogenic perturbation and the largest within the diverse insect family Cicadellidae distributed in America's tropical forests. To measure the possible effects of deforestation and related activities on leafhopper biodiversity, a survey of 143 historic collecting localities was conducted to determine whether species documented in the Mexican dry tropical forests during the 1920s to 1940s were still present. Biostatistical diversity analysis was performed to compare historical to recent data on species occurrences. A data matrix of 577 geographical records was analysed. In total, 374 Athysanini data records were included representing 115 species of 41 genera. Historically, species richness and diversity were higher than found in the recent survey, despite greater collecting effort in the latter. A strong trend in species decline was observed (−53%) over 75 years in this endangered seasonally dry ecosystem. Species completeness was dissimilar between historic and present data. Endemic taxa were significantly less important and represented in the 1920s–1940s species records. All localities surveyed in the dry tropical forest are disturbed and reduced by modern anthropogenic processes. Mexico harbours highly endemic leafhopper taxa with a large proportion of these inhabiting the dry forest. These findings provide important data for conservation decision making and modelling of distribution patterns of this threatened seasonally dry tropical ecosystem.


2018 ◽  
Vol 84 (17) ◽  
Author(s):  
Silvia Pajares ◽  
Julio Campo ◽  
Brendan J. M. Bohannan ◽  
Jorge D. Etchevers

ABSTRACTSeveral studies have shown that rainfall seasonality, soil heterogeneity, and increased nitrogen (N) deposition may have important effects on tropical forest function. However, the effects of these environmental controls on soil microbial communities in seasonally dry tropical forests are poorly understood. In a seasonally dry tropical forest in the Yucatan Peninsula (Mexico), we investigated the influence of soil heterogeneity (which results in two different soil types, black and red soils), rainfall seasonality (in two successive seasons, wet and dry), and 3 years of repeated N enrichment on soil chemical and microbiological properties, including bacterial gene content and community structure. The soil properties varied with the soil type and the sampling season but did not respond to N enrichment. Greater organic matter content in the black soils was associated with higher microbial biomass, enzyme activities, and abundances of genes related to nitrification (amoA) and denitrification (nirKandnirS) than were observed in the red soils. Rainfall seasonality was also associated with changes in soil microbial biomass and activity levels and N gene abundances.Actinobacteria,Proteobacteria,Firmicutes, andAcidobacteriawere the most abundant phyla. Differences in bacterial community composition were associated with soil type and season and were primarily detected at higher taxonomic resolution, where specific taxa drive the separation of communities between soils. We observed that soil heterogeneity and rainfall seasonality were the main correlates of soil bacterial community structure and function in this tropical forest, likely acting through their effects on soil attributes, especially those related to soil organic matter and moisture content.IMPORTANCEUnderstanding the response of soil microbial communities to environmental factors is important for predicting the contribution of forest ecosystems to global environmental change. Seasonally dry tropical forests are characterized by receiving less than 1,800 mm of rain per year in alternating wet and dry seasons and by high heterogeneity in plant diversity and soil chemistry. For these reasons, N deposition may affect their soils differently than those in humid tropical forests. This study documents the influence of rainfall seasonality, soil heterogeneity, and N deposition on soil chemical and microbiological properties in a seasonally dry tropical forest. Our findings suggest that soil heterogeneity and rainfall seasonality are likely the main factors controlling soil bacterial community structure and function in this tropical forest. Nitrogen enrichment was likely too low to induce significant short-term effects on soil properties, because this tropical forest is not N limited.


Author(s):  
Patrick Roberts

The above quote by the German poet, novelist, and painter Herman Hesse highlights the cultural significance of forests in nineteenth- and twentieth-century western culture as the ‘natural’ contrast to growing urban populations and industrial expansion. Hesse’s focus on the ‘ancient’ element of these environments is certainly valid in a tropical context, given that tropical forests are some of the oldest land-based environments on the planet, existing for over one thousand times longer than Homo sapiens (Upchurch and Wolf, 1987; Davis et al., 2005; Ghazoul and Shiel, 2010; Couvreur et al., 2011). This antiquity also makes them one of the richest and most diverse terrestrial ecosystems on the planet (Whitmore, 1998; Ghazoul and Shiel, 2010). Tropical rainforests, for example, contain over half of the world’s existing plant, animal, and insect species (Wilson, 1988). A significant portion of the developed world’s diet today originated in tropical forests—including staples such as squash and yams, spices such as black pepper, cinnamon, cloves, and sugar cane, and fruits including bananas, coconuts, avocados, mangoes, and tomatoes (Iriarte et al., 2007; Roberts et al., 2017a). Tropical forests also often provide ample freshwater for their inhabitants. However, despite popular perceptions of forests, and specifically tropical forests, as uniform, they are, in fact, highly variable across space and time. In tropical evergreen rainforests productivity is often primarily allocated to wood products, meaning that edible plants and animals for human subsistence have been considered lacking, or at least more difficult to extract, relative to more open tropical forest formations (Whitmore, 1998; Ghazoul and Shiel, 2010). Similarly, while evergreen tropical rainforests generally receive significant precipitation and freshwater, seasonally dry tropical forests are subject to sub-annual periods of aridity. Therefore, while archaeologists and anthropologists have tended to see ‘tropical forest’ as a uniform environmental block, it is important to explore the diversity within this category.


1991 ◽  
Vol 21 (1) ◽  
pp. 132-142 ◽  
Author(s):  
R. A. Houghton

The net annual flux of carbon from south and southeast Asia as a result of changes in the area of forests was calculated for the period 1850 to 1985. The total net flux ranged from 14.4 to 24.0 Pg of carbon, depending on the estimates of biomass used in the calculations. High estimates of biomass, based on direct measurement of a few stands, and low estimates of biomass, based on volumes of merchantable wood surveyed over large areas, differ by a factor of almost 2. These and previous estimates of the release of carbon from terrestrial ecosystems to the atmosphere have been based on changes in the area of forests, or rates of deforestation. Recent studies have shown, however, that the loss of carbon from forests in tropical Asia is greater than would be expected on the basis of deforestation alone. This loss of carbon from within forests (degradation) also releases carbon to the atmosphere when the products removed from the forest burn or decay. Thus, degradation should be included in analyses of the net flux of carbon from terrestrial ecosystems. Degradation may also explain some of the difference between estimates of tropical forest biomass if the higher estimates are based on undisturbed forests and the lower estimates are more representative of the region. The implication of degradation for estimates of the release of carbon from terrestrial ecosystems is explored. When degradation was included in the analyses, the net flux of carbon between 1850 and 1985 was 30.2 Pg of carbon, about 25% above that calculated on the basis of deforestation alone (with high estimates of biomass), and about 110% above that calculated with low estimates of biomass. Thus, lower estimates of biomass for contemporary tropical forests do not necessarily result in lower estimates of flux.


Sign in / Sign up

Export Citation Format

Share Document