Realistic Masks in the Real World

2021 ◽  
pp. 216-236
Author(s):  
Jet G. Sanders ◽  
Rob Jenkins

Security and crime prevention often rely on facial appearance to connect individuals to behaviours. Hyper-realistic face masks can potentially frustrate this connection by allowing the wearer to look like someone else. In this chapter, we review the evidence that hyper-realistic masks are truly realistic, in the sense that they are accepted as real faces. We begin by outlining relevant experimental studies of face identification and disguise. We then tabulate all criminal cases known to involve hyper-realistic face masks (41 cases between 2009 and 2019). Experimental tests suggest that failures to detect such masks can be attributed to the realism of the masks, without invoking inattention or incompetence on the part of observers. We end with eight proposals for improving mask detection, encompassing training, personnel selection, and machine vision. If the misuse of hyper-realistic masks becomes widespread, our inability to detect them will compromise face recognition infrastructure.

2020 ◽  
Vol 7 (9) ◽  
pp. 200233
Author(s):  
Matthew C. Fysh ◽  
Lisa Stacchi ◽  
Meike Ramon

Recent investigations of individual differences have demonstrated striking variability in performance both within the same subprocess in face cognition (e.g. face perception), but also between two different subprocesses (i.e. face perception versus face recognition ) that are assessed using different tasks (face matching versus face memory ). Such differences between and within individuals between and within laboratory tests raise practical challenges. This applies in particular to the development of screening tests for the selection of personnel in real-world settings where faces are routinely processed, such as at passport control. The aim of this study, therefore, was to examine the performance profiles of individuals within and across two different subprocesses of face cognition: face perception and face recognition. To this end, 146 individuals completed four different tests of face matching—one novel tool for assessing proficiency in face perception, as well as three established measures—and two benchmark tests of face memory probing face recognition. In addition to correlational analyses, we further scrutinized individual performance profiles of the highest and lowest performing observers identified per test , as well as across all tests . Overall, a number of correlations emerged between tests. However, there was limited evidence at the individual level to suggest that high proficiency in one test generalized to other tests measuring the same subprocess, as well as those that measured a different subprocess. Beyond emphasizing the need to honour inter-individual differences through careful multivariate assessment in the laboratory, our findings have real-world implications: combinations of tests that most accurately map the task(s) and processes of interest are required for personnel selection.


2008 ◽  
Vol 59 (5) ◽  
Author(s):  
Mirela Dulama ◽  
Nicoleta Deneanu ◽  
Cristian Dulama ◽  
Margarit Pavelescu

The paper presents the experimental tests concerning the treatment by membrane techniques of radioactive aqueous waste. Solutions, which have been treated by using the bench-scale installation, were radioactive simulated secondary wastes from the decontamination process with modified POD. Generally, an increasing of the retention is observed for most of the contaminants in the reverse osmosis experiments with pre-treatment steps. The main reason for taking a chemical treatment approach was to selectively remove soluble contaminants from the waste. In the optimization part of the precipitation step, several precipitation processes were compared. Based on this comparison, mixed [Fe(CN)6]4-/Al3+/Fe2+ was selected as a precipitation process applicable for precipitation of radionuclides and flocculation of suspended solid. Increased efficiencies for cesium radionuclides removal were obtained in natural zeolite adsorption pre-treatment stages and this was due to the fact that volcanic tuff used has a special affinity for this element. Usually, the addition of powdered active charcoal serves as an advanced purifying method used to remove organic compounds and residual radionuclides; thus by analyzing the experimental data (for POD wastes) one can observe a decreasing of about 50% for cobalt isotopes subsequently to the active charcoal adsorption.. The semipermeable membranes were used, which were prepared by the researchers from the Research Center for Macromolecular Materials and Membranes, Bucharest. The process efficiency was monitored by gamma spectrometry.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 626
Author(s):  
Riccardo Scazzosi ◽  
Marco Giglio ◽  
Andrea Manes

In the case of protection of transportation systems, the optimization of the shield is of practical interest to reduce the weight of such components and thus increase the payload or reduce the fuel consumption. As far as metal shields are concerned, some investigations based on numerical simulations showed that a multi-layered configuration made of layers of different metals could be a promising solution to reduce the weight of the shield. However, only a few experimental studies on this subject are available. The aim of this study is therefore to discuss whether or not a monolithic shield can be substituted by a double-layered configuration manufactured from two different metals and if such a configuration can guarantee the same perforation resistance at a lower weight. In order to answer this question, the performance of a ballistic shield constituted of a layer of high-strength steel and a layer of an aluminum alloy impacted by an armor piercing projectile was investigated in experimental tests. Furthermore, an axisymmetric finite element model was developed. The effect of the strain rate hardening parameter C and the thermal softening parameter m of the Johnson–Cook constitutive model was investigated. The numerical model was used to understand the perforation process and the energy dissipation mechanism inside the target. It was found that if the high-strength steel plate is used as a front layer, the specific ballistic energy increases by 54% with respect to the monolithic high-strength steel plate. On the other hand, the specific ballistic energy decreases if the aluminum plate is used as the front layer.


2021 ◽  
Vol 11 (11) ◽  
pp. 5008
Author(s):  
Juan José del Coz-Díaz ◽  
Felipe Pedro Álvarez-Rabanal ◽  
Mar Alonso-Martínez ◽  
Juan Enrique Martínez-Martínez

The thermal inertia properties of construction elements have gained a great deal of importance in building design over the last few years. Many investigations have shown that this is the key factor to improve energy efficiency and obtain optimal comfort conditions in buildings. However, experimental tests are expensive and time consuming and the development of new products requires shorter analysis times. In this sense, the goal of this research is to analyze the thermal behavior of a wall made up of lightweight concrete blocks covered with layers of insulating materials in steady- and transient-state conditions. For this, numerical and experimental studies were done, taking outdoor temperature and relative humidity as a function of time into account. Furthermore, multi-criteria optimization based on the design of the experimental methodology is used to minimize errors in thermal material properties and to understand the main parameters that influence the numerical simulation of thermal inertia. Numerical Finite Element Models (FEM) will take conduction, convection and radiation phenomena in the recesses of lightweight concrete blocks into account, as well as the film conditions established in the UNE-EN ISO 6946 standard. Finally, the numerical ISO-13786 standard and the experimental results are compared in terms of wall thermal transmittance, thermal flux, and temperature evolution, as well as the dynamic thermal inertia parameters, showing a good agreement in some cases, allowing builders, architects, and engineers to develop new construction elements in a short time with the new proposed methodology.


2021 ◽  
pp. 1-82
Author(s):  
Joseph Cesario

Abstract This article questions the widespread use of experimental social psychology to understand real-world group disparities. Standard experimental practice is to design studies in which participants make judgments of targets who vary only on the social categories to which they belong. This is typically done under simplified decision landscapes and with untrained decision makers. For example, to understand racial disparities in police shootings, researchers show pictures of armed and unarmed Black and White men to undergraduates and have them press "shoot" and "don't shoot" buttons. Having demonstrated categorical bias under these conditions, researchers then use such findings to claim that real-world disparities are also due to decision-maker bias. I describe three flaws inherent in this approach, flaws which undermine any direct contribution of experimental studies to explaining group disparities. First, the decision landscapes used in experimental studies lack crucial components present in actual decisions (Missing Information Flaw). Second, categorical effects in experimental studies are not interpreted in light of other effects on outcomes, including behavioral differences across groups (Missing Forces Flaw). Third, there is no systematic testing of whether the contingencies required to produce experimental effects are present in real-world decisions (Missing Contingencies Flaw). I apply this analysis to three research topics to illustrate the scope of the problem. I discuss how this research tradition has skewed our understanding of the human mind within and beyond the discipline and how results from experimental studies of bias are generally misunderstood. I conclude by arguing that the current research tradition should be abandoned.


Author(s):  
Hsun-Ping Hsieh ◽  
JiaWei Jiang ◽  
Tzu-Hsin Yang ◽  
Renfen Hu

The success of mediation is affected by many factors, such as the context of the quarrel, personality of both parties, and the negotiation skill of the mediator, which lead to uncertainty for the predicting work. This paper takes a different approach from previous legal prediction research. It analyzes and predicts whether two parties in a dispute can reach an agreement peacefully through the conciliation of mediation. With the inference result, we can know if the mediation is a more practical and time-saving method to solve the dispute. Existing works about legal case prediction mostly focus on prosecution or criminal cases. In this work, we propose a LSTM-based framework, called LSTMEnsembler, to predict mediation results by assembling multiple classifiers. Among these classifiers, some are powerful for modeling the numerical and categorical features of case information, e.g., XGBoost and LightGBM; and, some are effective for dealing with textual data, e.g., TextCNN and BERT. The proposed LSTMEnsembler aims to not only combine the effectiveness of different classifiers intelligently, but also capture temporal dependencies from previous cases to boost the performance of mediation prediction. Our experimental results show that our proposed LSTMEnsembler can achieve 85.6% for F-measure on real-world mediation data.


2015 ◽  
Vol 39 (3) ◽  
pp. 593-603
Author(s):  
Xinghui Zhang ◽  
Jianshe Kang ◽  
Hongzhi Teng ◽  
Jianmin Zhao

Gear and bearing faults are the main causes of gearbox failure. Till now, incipient fault diagnosis of these two components has been a problem and needs further research. In this context, it is found that Lucy–Richardson deconvolution (LRD) proved to be an excellent tool to enhance fault diagnosis in rolling element bearings and gears. LRD’s good identification capabilities of fault frequencies are presented which outperform envelope analysis. This is very critical for early fault diagnosis. The case studies were carried out to evaluate the effectiveness of the proposed method. The results of simulated and experimental studies show that LRD is efficient in alleviating the negative effect of noise and transmission path. The results of simulation and experimental tests demonstrated outperformance of LRD compared to classical envelope analysis for fault diagnosis in rolling element bearings and gears, especially when it is applied to the processing of signals with strong background noise.


2018 ◽  
Vol 9 (1) ◽  
pp. 60-77 ◽  
Author(s):  
Souhir Sghaier ◽  
Wajdi Farhat ◽  
Chokri Souani

This manuscript presents an improved system research that can detect and recognize the person in 3D space automatically and without the interaction of the people's faces. This system is based not only on a quantum computation and measurements to extract the vector features in the phase of characterization but also on learning algorithm (using SVM) to classify and recognize the person. This research presents an improved technique for automatic 3D face recognition using anthropometric proportions and measurement to detect and extract the area of interest which is unaffected by facial expression. This approach is able to treat incomplete and noisy images and reject the non-facial areas automatically. Moreover, it can deal with the presence of holes in the meshed and textured 3D image. It is also stable against small translation and rotation of the face. All the experimental tests have been done with two 3D face datasets FRAV 3D and GAVAB. Therefore, the test's results of the proposed approach are promising because they showed that it is competitive comparable to similar approaches in terms of accuracy, robustness, and flexibility. It achieves a high recognition performance rate of 95.35% for faces with neutral and non-neutral expressions for the identification and 98.36% for the authentification with GAVAB and 100% with some gallery of FRAV 3D datasets.


Sign in / Sign up

Export Citation Format

Share Document