Limited Extended Inheritance

Author(s):  
Francesca Merlin
Keyword(s):  

This chapter addresses the question of the extension of biological inheritance in the light of the fact that organisms inherit much more than DNA. Starting from recent proposals to reconceive the concept of biological inheritance, the chapter shows that one of the main assumptions in the literature is simply taken for granted without providing any evidence or argument to support it. The chapter first analyzes four distinctions—and the lessons drawn from them—and then proposes a redefinition of inheritance, which brings to the fore its privileged link with reproduction and the specific theoretical role of this concept in evolutionary biology.

Author(s):  
Andrew Briggs ◽  
Hans Halvorson ◽  
Andrew Steane

Two scientists and a philosopher aim to show how science both enriches and is enriched by Christian faith. The text is written around four themes: 1. God is a being to be known, not a hypothesis to be tested; 2. We set a high bar on what constitutes good argument; 3. Uncertainty is OK; 4. We are allowed to open up the window that the natural world offers us. This is not a work of apologetics. Rather, the text takes an overview of various themes and gives reactions and responses, intended to place science correctly as a valued component of the life of faith. The difference between philosophical analysis and theological reflection is expounded. Questions of human identity are addressed from philosophy, computer science, quantum physics, evolutionary biology and theological reflection. Contemporary physics reveals the subtle and open nature of physical existence, and offers lessons in how to learn and how to live with incomplete knowledge. The nature and role of miracles is considered. The ‘argument from design’ is critiqued, especially arguments from fine-tuning. Logical derivation from impersonal facts is not an appropriate route to a relationship of mutual trust. Mainstream evolutionary biology is assessed to be a valuable component of our understanding, but no exploratory process can itself fully account for the nature of what is discovered. To engage deeply in science is to seek truth and to seek a better future; it is also an activity of appreciation, as one may appreciate a work of art.


Since its origin in the early 20th century, the modern synthesis theory of evolution has grown to represent the orthodox view on the process of organic evolution. It is a powerful and successful theory. Its defining features include the prominence it accords to genes in the explanation of development and inheritance, and the role of natural selection as the cause of adaptation. Since the advent of the 21st century, however, the modern synthesis has been subject to repeated and sustained challenges. In the last two decades, evolutionary biology has witnessed unprecedented growth in the understanding of those processes that underwrite the development of organisms and the inheritance of characters. The empirical advances usher in challenges to the conceptual foundations of evolutionary theory. Many current commentators charge that the new biology of the 21st century calls for a revision, extension, or wholesale rejection of the modern synthesis theory of evolution. Defenders of the modern synthesis maintain that the theory can accommodate the exciting new advances in biology, without forfeiting its central precepts. The original essays collected in this volume—by evolutionary biologists, philosophers of science, and historians of biology—survey and assess the various challenges to the modern synthesis arising from the new biology of the 21st century. Taken together, the essays cover a spectrum of views, from those that contend that the modern synthesis can rise to the challenges of the new biology, with little or no revision required, to those that call for the abandonment of the modern synthesis.


2021 ◽  
Vol 36 (3) ◽  
Author(s):  
Rose Trappes

AbstractNiche construction theory (NCT) aims to transform and unite evolutionary biology and ecology. Much of the debate about NCT has focused on construction. Less attention has been accorded to the niche: what is it, exactly, that organisms are constructing? In this paper I compare and contrast the definition of the niche used in NCT with ecological niche definitions. NCT’s concept of the evolutionary niche is defined as the sum of selection pressures affecting a population. So defined, the evolutionary niche is narrower than the ecological niche. Moreover, when contrasted with a more restricted ecological niche concept, it has a slightly different extension. I point out three kinds of cases in which the evolutionary niche does not coincide with realized ecological niches: extreme habitat degradation, commensalism, and non-limiting or super-abundant resources. These conceptual differences affect the role of NCT in unifying ecology and evolutionary biology.


2021 ◽  
Vol 36 (1) ◽  
Author(s):  
Heather Browning ◽  
Walter Veit

AbstractIn this essay, we discuss Simona Ginsburg and Eva Jablonka’s The Evolution of the Sensitive Soul from an interdisciplinary perspective. Constituting perhaps the longest treatise on the evolution of consciousness, Ginsburg and Jablonka unite their expertise in neuroscience and biology to develop a beautifully Darwinian account of the dawning of subjective experience. Though it would be impossible to cover all its content in a short book review, here we provide a critical evaluation of their two key ideas—the role of Unlimited Associative Learning in the evolution of, and detection of, consciousness and a metaphysical claim about consciousness as a mode of being—in a manner that will hopefully overcome some of the initial resistance of potential readers to tackle a book of this length.


Nature Plants ◽  
2016 ◽  
Vol 2 (11) ◽  
Author(s):  
Xiangchao Gan ◽  
Angela Hay ◽  
Michiel Kwantes ◽  
Georg Haberer ◽  
Asis Hallab ◽  
...  

Abstract Finding causal relationships between genotypic and phenotypic variation is a key focus of evolutionary biology, human genetics and plant breeding. To identify genome-wide patterns underlying trait diversity, we assembled a high-quality reference genome of Cardamine hirsuta, a close relative of the model plant Arabidopsis thaliana. We combined comparative genome and transcriptome analyses with the experimental tools available in C. hirsuta to investigate gene function and phenotypic diversification. Our findings highlight the prevalent role of transcription factors and tandem gene duplications in morphological evolution. We identified a specific role for the transcriptional regulators PLETHORA5/7 in shaping leaf diversity and link tandem gene duplication with differential gene expression in the explosive seed pod of C. hirsuta. Our work highlights the value of comparative approaches in genetically tractable species to understand the genetic basis for evolutionary change.


2000 ◽  
Vol 12 (3) ◽  
pp. 257-257 ◽  
Author(s):  
Andrew Clarke

Theodosius Dobzhansky once remarked that nothing in biology makes sense other than in the light of evolution, thereby emphasising the central role of evolutionary studies in providing the theoretical context for all of biology. It is perhaps surprising then that evolutionary biology has played such a small role to date in Antarctic science. This is particularly so when it is recognised that the polar regions provide us with an unrivalled laboratory within which to undertake evolutionary studies. The Antarctic exhibits one of the classic examples of a resistance adaptation (antifreeze peptides and glycopeptides, first described from Antarctic fish), and provides textbook examples of adaptive radiations (for example amphipod crustaceans and notothenioid fish). The land is still largely in the grip of major glaciation, and the once rich terrestrial floras and faunas of Cenozoic Gondwana are now highly depauperate and confined to relatively small patches of habitat, often extremely isolated from other such patches. Unlike the Arctic, where organisms are returning to newly deglaciated land from refugia on the continental landmasses to the south, recolonization of Antarctica has had to take place by the dispersal of propagules over vast distances. Antarctica thus offers an insight into the evolutionary responses of terrestrial floras and faunas to extreme climatic change unrivalled in the world. The sea forms a strong contrast to the land in that here the impact of climate appears to have been less severe, at least in as much as few elements of the fauna show convincing signs of having been completely eradicated.


Author(s):  
Mukul Sharma ◽  
Pushpendra Singh

Abstract: TlyA proteins are related to distinct functions in a diverse spectrum of bacterial pathogens including mycobacterial spp. There are several annotated proteins function as hemolysin or pore forming molecules that play an important role in the virulence of pathogenic organisms. Many studies reported the dual activity of mycobacterial TlyA as ‘hemolysin’ and ‘S-adenosylmethionine dependent rRNA methylase’. To act as a hemolysin, a sequence must have a signal sequence and transmembrane segment which helps the protein to enter the extracellular environment. Interestingly, the mycobacterial tlyA has neither a traditional signal sequences of general/sec/tat pathways nor any transmembrane segments are present. Still it can reach the extracellular milieu with the help of non-classical signal mechanisms. Also, retention of tlyA in cultivable mycobacterial pathogens (such as Mycobacterium tuberculosis and M. marinum) as well as uncultivated mycobacterial pathogens despite their extreme reductive evolution (such as M. leprae, M. lepromatosis and M. uberis) suggests its crucial role in evolutionary biology of pathogenic mycobacteria. Numerous virulence factors have been characterised from the uncultivable mycobacteria but the information of TlyA protein is still limited in terms of molecular and structural characterisation. The genomic insights offered by comparative analysis of TlyA sequences and its conserved domains reveal its pore forming activity which further confirms its role as a virulence protein, particularly in uncultivable mycobacteria. Therefore, this review presents a comparative analysis of mycobacterial TlyA family by sequence homology and alignment to improve our understanding of this unconventional hemolysin and RNA methyltransferase TlyA of uncultivable mycobacteria.


Author(s):  
Gino Cattani ◽  
Mariano Mastrogiorgio

Evolutionary thinking has grown significantly and has had a profound impact on various fields such as economics, strategy, and technological innovation. An important paradigm that underlies the evolutionary theory of innovation is neo-Darwinian evolution. According to this paradigm, evolution is gradualist and is based on the mechanisms of variation, selection, and retention. Starting from the 1970s, new theoretical advancements in evolutionary biology have recognized the central role of punctuated equilibrium, speciation, and exaptation in evolution and of Woesian dynamics. However, despite their significant influence in evolutionary biology, these advancements have been reflected only partially in evolutionary approaches to economics, strategy, and technological innovation. This chapter reviews these advancements and explores their key implications for innovation, such as the role of serendipity and unpre-stateability leading to disequilibrium in economics systems, and the importance of adopting an option-based logic during the innovation process.


Author(s):  
Alexander Vucinich

The Russian scientific community welcomed Darwin’s evolutionary theory and made it a basis of research in a wide range of biological sciences. Russian evolutionary studies in embryology, paleontology, microbiology and pathology attracted international attention. The vast scope of Darwin’s popularity in Russia was dramatically manifested in 1909, on the occasion of the national celebration of the 100th anniversary of the birth of the great English scientist and the 50th anniversary of the publication of The Origin of Species. All universities, naturalist societies, and many newspapers and popular journals took part in the celebration, which produced a hundred praiseful publications on Darwinian themes. University philosophers, steeped in metaphysical idealism and spiritualism, linked Darwinism to what they called ‘modern scientific materialism’ and rejected it wholly. They were strongly predisposed to welcome modern revivals of metaphysical vitalism. Freelance philosophers, usually associated with heterodox ideological movements and influenced by Auguste Comte’s positivism or various modern neopositivist and Neo-Kantian currents, credited Darwinism with making science a major topic of modern philosophy. A new discipline, known as ‘scientific philosophy’, rapidly developing in the West, made its first appearance in Russia. In the Soviet Union, Darwin’s evolutionary theory followed a course of cataclysmic ruptures. During the 1920s, Soviet scientists made significant contributions to the study of the role of the genetic environment in biological evolution and helped set the stage for an evolutionary synthesis of Darwinism and genetics. The Stalinist era (1929–53) marked a drastic departure from the prevalent currents in evolutionary biology. It was dominated by the rise of Lysenkoism, a pseudo-science identified as ‘creative Darwinism’, and was guided by a diluted version of the Lamarckian idea of evolution as a product of the inheritance of acquired characteristics. Lysenkoism rejected the Darwinian conception of natural selection, downgraded the role of physico-chemical analysis in biology, and paid no attention to molecular biology. In 1948 Lysenkoism was officially recognized as the Marxist theory of evolution. Under Lysenko’s influence, genetics was proclaimed a ‘bourgeois science’ and was made illegal. The downfall of Lysenkoism in 1964 brought the re-establishment of genetics, a full-scale return to true Darwinism, and a re-intensified interest in ‘evolutionary synthesis’.


Author(s):  
Randolph M. Nesse ◽  
Richard Dawkins

The role of evolutionary biology as a basic science for medicine has been expanding rapidly. Some evolutionary methods are already widely applied in medicine, such as population genetics and methods for analysing phylogenetic trees. Newer applications come from seeking evolutionary as well as proximate explanations for disease. ...


Sign in / Sign up

Export Citation Format

Share Document