Comments on Gideon Rosen’s “What is Normative Necessity?”

Author(s):  
Kit Fine

Gideon Rosen supports the central theses of “Varieties of Necessity” (VN) concerning the distinction between metaphysical and normative necessity and the proper formulation of moral supervenience; and he takes the defense of these theses much further than I did in my own paper and makes the case for them especially vivid and compelling. I was especially impressed by his attempt to find out what might lie ...

2021 ◽  
Vol 13 (11) ◽  
pp. 5848
Author(s):  
Isaías Gomes ◽  
Rui Melicio ◽  
Victor M. F. Mendes

This paper presents a computer application to assist in decisions about sustainability enhancement due to the effect of shifting demand from less favorable periods to periods that are more convenient for the operation of a microgrid. Specifically, assessing how the decisions affect the economic participation of the aggregating agent of the microgrid bidding in an electricity day-ahead market. The aggregating agent must manage microturbines, wind systems, photovoltaic systems, energy storage systems, and loads, facing load uncertainty and further uncertainties due to the use of renewable sources of energy and participation in the day-ahead market. These uncertainties cannot be removed from the decision making, and, therefore, require proper formulation, and the proposed approach customizes a stochastic programming problem for this operation. Case studies show that under these uncertainties and the shifting of demand to convenient periods, there are opportunities to make decisions that lead to significant enhancements of the expected profit. These enhancements are due to better bidding in the day-ahead market and shifting energy consumption in periods of favorable market prices for exporting energy. Through the case studies it is concluded that the proposed approach is useful for the operation of a microgrid.


Author(s):  
Gary Harman

Abstract Bacteria and fungi are both used in biological seed treatments. While all have potential uses, some organisms are more widely and successfully used than others. Shelf life is an important consideration. For this reason, organisms that lack cell walls are more difficult to use than ones with long-lasting spores. Bacillus and Trichoderma are both widely effective, have good shelf life, and are frequently used. However, Rhizobiacae lack cell walls, which is a limitation; they are widely used because their symbiosis with legumes facilitates nitrogen fixation which is an important factor that provides economic, agricultural and environmental sustainability. For all organisms, proper formulation is critical for success; this is especially true for Rhizobiacae and other gram-negative bacteria. There are several specialized processes to deliver microbial agents or to enhance their biological activity, such as solid matrix priming and hydroseeding. Biorational chemicals derived from microorganisms are also frequently used. Both living organisms and biorationals provide benefits to plant agriculture. They can control diseases and increase resistance to abiotic stresses such as drought, temperature, salt, and flooding. They also can enhance mineral nutrition and photosynthesis. For these applications, the most effective ones colonize roots internally and provide season-long benefits. These endophytes induce systemic changes in plants’ gene expression and encoding of proteins.


2015 ◽  
Vol 36 (2) ◽  
pp. 17-28
Author(s):  
Lucyna Florkowska ◽  
Jan Walaszczyk

Abstract Numerical modelling is an important tool used to analyse various aspects of the impact of underground mining on existing and planned buildings. The interaction between the building and the soil is a complex matter and in many cases a numerical simulation is the only way of making calculations which will take into consideration the co–existence of a number of factors which have a significant influence on the solution. The complexity of the matter also makes it a difficult task to elaborate a proper mathematical model – it requires both a thorough knowledge of geologic conditions of the subsoil and the structural characteristics of the building. This paper discusses the most important problems related to the construction of a mathematical model of a building-mining subsoil system. These problems have been collected on the basis of many years of experience the authors have in observing the surveying and tensometric deformations of the rock–mass and buildings as well as in mathematical and numerical modelling of the observed processes.


2004 ◽  
Vol 40 (3) ◽  
pp. 335-339 ◽  
Author(s):  
MARK C. MURPHY

Michael J. Almeida offers two criticisms of the argument of my ‘A trilemma for divine command theory’. The first criticism is that I mistakenly assume the validity of the following inference pattern: property A is identical to property B; property B supervenes on property C; therefore, property A supervenes on property C. The second criticism is that I have misinterpreted the moral-supervenience thesis upon which I rely in making this argument. The first of Almeida's criticisms is completely untenable. The second of his criticisms casts doubt on my argument, a doubt that I can mitigate but not entirely dispel.


Author(s):  
Edward Flemming

Dispersion Theory concerns the constraints that govern contrasts, the phonetic differences that can distinguish words in a language. Specifically it posits that there are distinctiveness constraints that favor contrasts that are more perceptually distinct over less distinct contrasts. The preference for distinct contrasts is hypothesized to follow from a preference to minimize perceptual confusion: In order to recover what a speaker is saying, a listener must identify the words in the utterance. The more confusable words are, the more likely a listener is to make errors. Because contrasts are the minimal permissible differences between words in a language, banning indistinct contrasts reduces the likelihood of misperception. The term ‘dispersion’ refers to the separation of sounds in perceptual space that results from maximizing the perceptual distinctiveness of the contrasts between those sounds, and is adopted from Lindblom’s Theory of Adaptive Dispersion, a theory of phoneme inventories according to which inventories are selected so as to maximize the perceptual differences between phonemes. These proposals follow a long tradition of explaining cross-linguistic tendencies in the phonetic and phonological form of languages in terms of a preference for perceptually distinct contrasts. Flemming proposes that distinctiveness constraints constitute one class of constraints in an Optimality Theoretic model of phonology. In this context, distinctiveness constraints predict several basic phenomena, the first of which is the preference for maximal dispersion in inventories of contrasting sounds that first motivated the development of the Theory of Adaptive Dispersion. But distinctiveness constraints are formulated as constraints on the surface forms of possible words that interact with other phonological constraints, so they evaluate the distinctiveness of contrasts in context. As a result, Dispersion Theory predicts that contrasts can be neutralized or enhanced in particular phonological contexts. This prediction arises because the phonetic realization of sounds depends on their context, so the perceptual differences between contrasting sounds also depend on context. If the realization of a contrast in a particular context would be insufficiently distinct (i.e., it would violate a high-ranked distinctiveness constraint), there are two options: the offending contrast can be neutralized, or it can be modified (‘enhanced’) to make it more distinct. A basic open question regarding Dispersion Theory concerns the proper formulation of distinctiveness constraints and the extent of variation in their rankings across languages, issues that are tied up with the questions about the nature of perceptual distinctiveness. Another concerns the size and nature of the comparison set of contrasting word-forms required to be able to evaluate whether a candidate output satisfies distinctiveness constraints.


Insects ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 382
Author(s):  
Yu-Cheng Zhu ◽  
Yanhua Wang ◽  
Maribel Portilla ◽  
Katherine Parys ◽  
Wenhong Li

Methyl benzoate (MB) is a component of bee semiochemicals. Recent discovery of insecticidal activity of MB against insect pests provides a potential alternative to chemical insecticides. The aim of this study was to examine any potential adverse impact of MB on honey bees. By using two different methods, a spray for contact and feeding for oral toxicity, LC50s were 236.61 and 824.99 g a.i./L, respectively. The spray toxicity was 2002-fold and 173,163-fold lower than that of imidacloprid and abamectin. Piperonyl butoxide (PBO, inhibiting P450 oxidases [P450]) significantly synergized MB toxicity in honey bees, indicating P450s are the major MB-detoxification enzymes for bees. Assessing additive/synergistic interactions indicated that MB synergistically or additively aggravated the toxicity of all four insecticides (representing four different classes) in honey bees. Another adverse effect of MB in honey bees was the significant decrease of orientation and flight ability by approximately 53%. Other influences of MB included minor decrease of sucrose consumption, minor increase of P450 enzymatic activity, and little to no effect on esterase and glutathione S-transferase (GST) activities. By providing data from multiple experiments, we have substantially better understanding how important the P450s are in detoxifying MB in honey bees. MB could adversely affect feeding and flight in honey bees, and may interact with many conventional insecticides to aggravate toxicity to bees. However, MB is a relatively safe chemical to bees. Proper formulation and optimizing proportion of MB in mixtures may be achievable to enhance efficacy against pests and minimize adverse impact of MB on honey bees.


2012 ◽  
Vol 1405 ◽  
Author(s):  
Paul Anderson ◽  
Paula Cook ◽  
Wendy Balas-Hummers ◽  
Andy Davis ◽  
Kyle Mychajlonka

ABSTRACTIn development of new explosives, it is often necessary to balance a number of attributes in performance while certain formulation constraints exist. Statistical design of experiments (DOE) is a valuable tool for rapid formulation optimization and minimization of costly and hazardous testing. During the development of metal-loaded explosives designed for enhanced blast, it was discovered that upon proper formulation, aluminum additives obtained full reaction by 7 volume expansions, which resulted in extremely high Gurney energies equivalent to LX-14 and PBXN-5 but with lower loading of nitramines. The early aluminum oxidation can be described by Eigenvalue type detonations, where the fully reacted Hugoniot of the condensed phase aluminum oxide and explosive products lies below the unreacted aluminum Hugoniot. Such an analysis describes fully the agreement of aluminum consumption by 7 volume expansions from 1-inch copper cylinder expansion tests and an analytic cylinder model, as well as detonation calorimetry. With the early reaction of aluminum also comes a shift in the gaseous reaction products to higher enthalpy species such as CO and H2, leading to further augmentation of blast. Thus, both the mechanical energy (for fragmentation or “metal pushing”) and blast (for structural targets) are available in a single explosive fill. This provides capability for combined metal pushing and blast in a single explosive that was not previously possible. Development of such explosives and the importance of modern statistical design of experiments will be shared.


Sign in / Sign up

Export Citation Format

Share Document