Green Industrial Policy in Comparative Perspective

Author(s):  
Joanna I. Lewis

The deployment of renewable energy (RE) is increasing around the world, driven in part by the global climate commitments that have been adopted by almost 200 countries under the Paris Agreement. It is therefore important to understand how countries are adopting national strategies to promote green growth through RE development and, in particular, the role of “green industrial policies.” Industrial policies include a variety of protectionist measures that encourage domestic manufacturing for RE and raise barriers to foreign entry into domestic markets, setting up an inherent tension between low-carbon development and international trade. This chapter reviews the policies and incentives commonly used to support RE deployment as well as the localization of RE manufacturing. It then turns to a review of the green industrial policy strategies of the Chinese wind sector and the Indian solar sector—two examples of using green industrial policy with different outcomes. While green industrial policy helps states justify the low-carbon transition, it also potentially makes that transition costlier and more inefficient. The chapter ends with recommendations for ongoing policy discussions including the need for continued engagement about how to best foster clean energy innovation, rapid technology deployment, and economic development with a shared vision that does not leave emerging and developing countries behind.

2021 ◽  
Vol 1 ◽  
Author(s):  
Fadwa Eljack ◽  
Monzure-Khoda Kazi

Low carbon hydrogen can be an excellent source of clean energy, which can combat global climate change and poor air quality. Hydrogen based economy can be a great opportunity for a country like Qatar to decarbonize its multiple sectors including transportation, shipping, global energy markets, and industrial sectors. However, there are still some barriers to the realization of a hydrogen-based economy, which includes large scale hydrogen production cost, infrastructure investments, bulk storage, transport & distribution, safety consideration, and matching supply-demand uncertainties. This paper highlights how the aforementioned challenges can be handled strategically through a multi-sector industrial-urban symbiosis for the hydrogen supply chain implementation. Such symbiosis can enhance the mutual relationship between diverse industries and urban planning by exploring varied scopes of multi-purpose hydrogen usage (i.e., clean energy source as a safer carrier, industrial feedstock and intermittent products, vehicle and shipping fuel, and international energy trading, etc.) both in local and international markets. It enables individual entities and businesses to participate in the physical exchange of materials, by-products, energy, and water, with strategic advantages for all participants. Besides, waste/by-product exchanges, several different kinds of synergies are also possible, such as the sharing of resources and shared facilities. The diversified economic base, regional proximity and the facilitation of rules, strategies and policies may be the key drivers that support the creation of a multi-sector hydrogen supply chain in Qatar.


2011 ◽  
Vol 361-363 ◽  
pp. 1105-1108
Author(s):  
Jian Zhang ◽  
Yan Hui Sui ◽  
Yang Zheng ◽  
Xue Biao Geng

Global climate changes are threatening the survival of our species. Landscape architecture adaptive to climate change has become a hotspot. Many low-carbon ideas are involved in the process of formation of some regional landscape. This paper discussed the low-carbon ideas in some regional landscape from scientific landscape pattern, technology of using clean energy, usage of local materials, ecological design for construction and so on. These ideas are valuable to modern landscape architecture. In order to create new landscapes accordant with the spirit of the times, more attention should been paid to how to integrate ancient low-carbon ideas, new technology, local characteristics and function into modern landscape architecture.


2021 ◽  
pp. 1-22
Author(s):  
Joanna I. Lewis

Abstract Renewable energy (RE) will play a significant role in national climate mitigation strategies, including those put forth in the context of the Paris Agreement. This article examines the role of industrial policy in supporting renewables and how it compares to the use of other types of RE policies in both location and quantity around the world. On the basis of an original database of RE policy support measures developed for this analysis, the article illustrates which measures are most commonly being used around the world and what types of countries are using them. It highlights the use of a wide range of policy types, including many industrial policies, and a disparity in the use of industrial policies between smaller emitters and larger emitters, with important implications for which countries stand to benefit from the development of domestic RE industries and for our ability to achieve long-term climate goals.


2013 ◽  
Vol 291-294 ◽  
pp. 1455-1460
Author(s):  
Shao Ping Li ◽  
Qian Wang ◽  
Ming Xin Cui

Along with global climate warming, low-carbon economy attracts much attention and has become one of the research hotspots. As the old industrial base, Northeast China is the key to emission reduction. This paper analyses the development status of low-carbon economy in the northeast old industrial base from the economic development, energy consumption and carbon emissions, and then concludes four problems, including heavy industry which dominated in the economy, the severe disproportion in the energy consumption structure, the lack of technological innovation and the outdated equipment, the unreasonable supporting policy mechanism, finally puts forward corresponding countermeasures, transform traditional industries and develop burgeoning industries, optimize energy structure and develop clean energy, introduce highly efficient equipments and encourage technical innovation, make the planning strategies and innovate in policy mechanism.


Adsorption ◽  
2021 ◽  
Author(s):  
Anne Streb ◽  
Marco Mazzotti

Abstract Hydrogen as clean energy carrier is expected to play a key role in future low-carbon energy systems. In this paper, we demonstrate a new technology for coupling fossil-fuel based hydrogen production with carbon capture and storage (CCS): the integration of CO2 capture and H2 purification in a single vacuum pressure swing adsorption (VPSA) cycle. An eight step VPSA cycle is tested in a two-column lab-pilot for a ternary CO2–H2–CH4 stream representative of shifted steam methane reformer (SMR) syngas, while using commercial zeolite 13X as adsorbent. The cycle can co-purify CO2 and H2, thus reaching H2 purities up to 99.96%, CO2 purities up to 98.9%, CO2 recoveries up to 94.3% and H2 recoveries up to 81%. The key decision variables for adjusting the separation performance to reach the required targets are the heavy purge (HP) duration, the feed duration, the evacuation pressure and the flow rate of the light purge (LP). In contrast to that, the separation performance is rather insensitive towards small changes in feed composition and in HP inlet composition. Comparing the experimental results with simulation results shows that the model for describing multi-component adsorption is critical in determining the predictive capabilities of the column model. Here, the real adsorbed solution theory (RAST) is necessary to describe all experiments well, whereas neither extended isotherms nor the ideal adsorbed solution theory (IAST) can reproduce all effects observed experimentally.


2021 ◽  
Vol 13 (12) ◽  
pp. 6517
Author(s):  
Innocent Chirisa ◽  
Trynos Gumbo ◽  
Veronica N. Gundu-Jakarasi ◽  
Washington Zhakata ◽  
Thomas Karakadzai ◽  
...  

Reducing vulnerability to climate change and enhancing the long-term coping capacities of rural or urban settlements to negative climate change impacts have become urgent issues in developing countries. Developing countries do not have the means to cope with climate hazards and their economies are highly dependent on climate-sensitive sectors such as agriculture, water, and coastal zones. Like most countries in Southern Africa, Zimbabwe suffers from climate-induced disasters. Therefore, this study maps critical aspects required for setting up a strong financial foundation for sustainable climate adaptation in Zimbabwe. It discusses the frameworks required for sustainable climate adaptation finance and suggests the direction for success in leveraging global climate financing towards building a low-carbon and climate-resilient Zimbabwe. The study involved a document review and analysis and stakeholder consultation methodological approach. The findings revealed that Zimbabwe has been significantly dependent on global finance mechanisms to mitigate the effects of climate change as its domestic finance mechanisms have not been fully explored. Results revealed the importance of partnership models between the state, individuals, civil society organisations, and agencies. Local financing institutions such as the Infrastructure Development Bank of Zimbabwe (IDBZ) have been set up. This operates a Climate Finance Facility (GFF), providing a domestic financial resource base. A climate change bill is also under formulation through government efforts. However, numerous barriers limit the adoption of adaptation practices, services, and technologies at the scale required. The absence of finance increases the vulnerability of local settlements (rural or urban) to extreme weather events leading to loss of life and property and compromised adaptive capacity. Therefore, the study recommends an adaptation financing framework aligned to different sectoral policies that can leverage diverse opportunities such as blended climate financing. The framework must foster synergies for improved impact and implementation of climate change adaptation initiatives for the country.


2021 ◽  
Vol 13 (2) ◽  
pp. 821
Author(s):  
Keith L. Kline ◽  
Virginia H. Dale ◽  
Erin Rose ◽  
Bruce Tonn

Wood-based pellets are produced in the southeastern United States (SE US) and shipped to Europe for the generation of heat and power. Effects of pellet production on selected Sustainability Development Goals (SDGs) are evaluated using industry information, available energy consumption data, and published research findings. Challenges associated with identifying relevant SDG goals and targets for this particular bioenergy supply chain and potential deleterious impacts are also discussed. We find that production of woody pellets in the SE US and shipments to displace coal for energy in Europe generate positive effects on affordable and clean energy (SDG 7), decent work and economic growth (SDG 8), industry innovation and infrastructure (SDG 9), responsible consumption and production (SDG 12), and life on land (SDG 15). Primary strengths of the pellet supply chain in the SE US are the provisioning of employment in depressed rural areas and the displacement of fossil fuels. Weaknesses are associated with potential impacts on air, water, and biodiversity that arise if the resource base and harvest activities are improperly managed. The SE US pellet supply chain provides an opportunity for transition to low-carbon industries and innovations while incentivizing better resource management.


2021 ◽  
pp. 251484862110249
Author(s):  
Siddharth Sareen

Increasing recognition of the irrefutable urgency to address the global climate challenge is driving mitigation efforts to decarbonise. Countries are setting targets, technological innovation is making renewable energy sources competitive and fossil fuel actors are leveraging their incumbent privilege and political reach to modulate energy transitions. As techno-economic competitiveness is rapidly reconfigured in favour of sources such as solar energy, governance puzzles dominate the research frontier. Who makes key decisions about decarbonisation based on what metrics, and how are consequent benefits and burdens allocated? This article takes its point of departure in ambitious sustainability metrics for solar rollout that Portugal embraced in the late 2010s. This southwestern European country leads on hydro and wind power, and recently emerged from austerity politics after the 2008–2015 recession. Despite Europe’s best solar irradiation, its big solar push only kicked off in late 2018. In explaining how this arose and unfolded until mid-2020 and why, the article investigates what key issues ambitious rapid decarbonisation plans must address to enhance social equity. It combines attention to accountability and legitimacy to offer an analytical framework geared at generating actionable knowledge to advance an accountable energy transition. Drawing on empirical study of the contingencies that determine the implementation of sustainability metrics, the article traces how discrete acts legitimate specific trajectories of territorialisation by solar photovoltaics through discursive, bureaucratic, technocratic and financial practices. Combining empirics and perspectives from political ecology and energy geographies, it probes the politics of just energy transitions to more low-carbon and equitable societal futures.


Author(s):  
Muntasir Murshed ◽  
Zahoor Ahmed ◽  
Md Shabbir Alam ◽  
Haider Mahmood ◽  
Abdul Rehman ◽  
...  

Author(s):  
Dandan Liu ◽  
Dewei Yang ◽  
Anmin Huang

China has grown into the world’s largest tourist source market and its huge tourism activities and resulting greenhouse gas (GHG) emissions are particularly becoming a concern in the context of global climate warming. To depict the trajectory of carbon emissions, a long-range energy alternatives planning system (LEAP)-Tourist model, consisting of two scenarios and four sub-scenarios, was established for observing and predicting tourism greenhouse gas peaks in China from 2017 to 2040. The results indicate that GHG emissions will peak at 1048.01 million-ton CO2 equivalent (Mt CO2e) in 2033 under the integrated (INT) scenario. Compared with the business as usual (BAU) scenario, INT will save energy by 24.21% in 2040 and reduce energy intensity from 0.4979 tons of CO2 equivalent/104 yuan (TCO2e/104 yuan) to 0.3761 Tce/104 yuan. Although the INT scenario has achieved promising effects of energy saving and carbon reduction, the peak year 2033 in the tourist industry is still later than China’s expected peak year of 2030. This is due to the growth potential and moderate carbon control measures in the tourist industry. Thus, in order to keep the tourist industry in synchronization with China’s peak goals, more stringent measures are needed, e.g., the promotion of clean fuel shuttle buses, the encouragement of low carbon tours, the cancelation of disposable toiletries and the recycling of garbage resources. The results of this simulation study will help set GHG emission peak targets in the tourist industry and formulate a low carbon roadmap to guide carbon reduction actions in the field of GHG emissions with greater certainty.


Sign in / Sign up

Export Citation Format

Share Document