scholarly journals LEAP-Based Greenhouse Gases Emissions Peak and Low Carbon Pathways in China’s Tourist Industry

Author(s):  
Dandan Liu ◽  
Dewei Yang ◽  
Anmin Huang

China has grown into the world’s largest tourist source market and its huge tourism activities and resulting greenhouse gas (GHG) emissions are particularly becoming a concern in the context of global climate warming. To depict the trajectory of carbon emissions, a long-range energy alternatives planning system (LEAP)-Tourist model, consisting of two scenarios and four sub-scenarios, was established for observing and predicting tourism greenhouse gas peaks in China from 2017 to 2040. The results indicate that GHG emissions will peak at 1048.01 million-ton CO2 equivalent (Mt CO2e) in 2033 under the integrated (INT) scenario. Compared with the business as usual (BAU) scenario, INT will save energy by 24.21% in 2040 and reduce energy intensity from 0.4979 tons of CO2 equivalent/104 yuan (TCO2e/104 yuan) to 0.3761 Tce/104 yuan. Although the INT scenario has achieved promising effects of energy saving and carbon reduction, the peak year 2033 in the tourist industry is still later than China’s expected peak year of 2030. This is due to the growth potential and moderate carbon control measures in the tourist industry. Thus, in order to keep the tourist industry in synchronization with China’s peak goals, more stringent measures are needed, e.g., the promotion of clean fuel shuttle buses, the encouragement of low carbon tours, the cancelation of disposable toiletries and the recycling of garbage resources. The results of this simulation study will help set GHG emission peak targets in the tourist industry and formulate a low carbon roadmap to guide carbon reduction actions in the field of GHG emissions with greater certainty.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Bin Chen ◽  
Guoxuan He ◽  
Jing Qi ◽  
Meirong Su ◽  
Shiyi Zhou ◽  
...  

Global climate change caused by greenhouse gas (GHG) emissions, which severely limits the development of human society and threatens the survival of humanity, has drawn the international community's long-term attention. Gathering the most important production factors in the region, an industrial park usually represents the development level of specific industries in the region. Therefore, the industrial park should be regarded as the base unit for developing a low-carbon economy and reducing GHG emissions. Focusing on a typical high-end industrial park in Beijing, we analyze the carbon sources within the system boundary and probe into the emission structure in view of life-cycle analysis. A GHG inventory is thereby set up to calculate all GHG emissions from the concerned park. Based on the results, suggestions are presented to guide the low-carbon development of the high-end industrial park.


2017 ◽  
Vol 30 (1) ◽  
pp. 191-214 ◽  
Author(s):  
Meryl Jagarnath ◽  
Tirusha Thambiran

Because current emissions accounting approaches focus on an entire city, cities are often considered to be large emitters of greenhouse gas (GHG) emissions, with no attention to the variation within them. This makes it more difficult to identify climate change mitigation strategies that can simultaneously reduce emissions and address place-specific development challenges. In response to this gap, a bottom-up emissions inventory study was undertaken to identify high emission zones and development goals for the Durban metropolitan area (eThekwini Municipality). The study is the first attempt at creating a spatially disaggregated emissions inventory for key sectors in Durban. The results indicate that particular groups and economic activities are responsible for more emissions, and socio-spatial development and emission inequalities are found both within the city and within the high emission zone. This is valuable information for the municipality in tailoring mitigation efforts to reduce emissions and address development gaps for low-carbon spatial planning whilst contributing to objectives for social justice.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung

Nowadays, the global climate change has been a worldwide concern and the greenhouse gases (GHG) emissions are considered as the primary cause of that. The United Nations Conference on Environment and Development (UNCED) divided countries into two groups: Annex I Parties and Non-Annex I Parties. Since Iran and all other countries in the Middle East are among Non-Annex I Parties, they are not required to submit annual GHG inventory report. However, the global climate change is a worldwide phenomenon so Middle Eastern countries should be involved and it is necessary to prepare such a report at least unofficially. In this paper the terminology and the methods to calculate GHG emissions will first be explained and then GHG emissions estimates for the Iranian power plants will be presented. Finally the results will be compared with GHG emissions from the Canadian electricity generation sector. The results for the Iranian power plants show that in 2005 greenhouse gas intensity for steam power plants, gas turbines and combined cycle power plants were 617, 773, and 462 g CO2eq/kWh, respectively with the overall intensity of 610 g CO2eq/kWh for all thermal power plants. This GHG intensity is directly depend on efficiency of power plants. Whereas, in 2004 GHG intensity for electricity generation sector in Canada for different fuels were as follows: Coal 1010, refined petroleum products 640, and natural gas 523 g CO2eq/kWh, which are comparable with same data for Iran. For average GHG intensity in the whole electricity generation sector the difference is much higher: Canada 222 vs. Iran 610g CO2eq/kWh. The reason is that in Canada a considerable portion of electricity is generated by hydro-electric and nuclear power plants in which they do not emit significant amount of GHG emissions. The average GHG intensity in electricity generation sector in Iran between 1995 and 2005 experienced 13% reduction. While in Canada at the same period of time there was 21% increase. However, the results demonstrate that still there are great potentials for GHG emissions reduction in Iran’s electricity generation sector.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Philip J. Ball

Abstract A review of conventional, unconventional, and advanced geothermal technologies highlights just how diverse and multi-faceted the geothermal industry has become, harnessing temperatures from 7 °C to greater than 350 °C. The cost of reducing greenhouse emissions is examined in scenarios where conventional coal or combined-cycle gas turbine (CCGT) power plants are abated. In the absence of a US policy on a carbon tax, the marginal abatement cost potential of these technologies is examined within the context of the social cost of carbon (SCC). The analysis highlights that existing geothermal heat and power technologies and emerging advanced closed-loop applications could deliver substantial cost-efficient baseload energy, leading to the long-term decarbonization. When considering an SCC of $25, in a 2025 development scenario, geothermal technologies ideally need to operate with full life cycle assessment (FLCA) emissions, lower than 50 kg(CO2)/MWh, and aim to be within the cost range of $30−60/MWh. At these costs and emissions, geothermal can provide a cost-competitive low-carbon, flexible, baseload energy that could replace existing coal and CCGT providing a significant long-term reduction in greenhouse gas (GHG) emissions. This study confirms that geothermally derived heat and power would be well positioned within a diverse low-carbon energy portfolio. The analysis presented here suggests that policy and regulatory bodies should, if serious about lowering carbon emissions from the current energy infrastructure, consider increasing incentives for geothermal energy development.


Author(s):  
Debbie Hopkins ◽  
James Higham

Since the turn of the 21st Century, the world has experienced unprecedented economic, political, social and environmental transformation. The ‘inconvenient truth’ of climate change is now undeniable; rising temperatures and the increasing frequency and intensity of extreme events have resulted in the loss of lives, livelihoods and habitats as well as straining economies. Increasingly mobile lives are often dependent on high carbon modes of transport, representing a substantial contribution to global greenhouse gas (GHG) emissions, the underlying cause of anthropogenic climate change. With growing demand and rising emissions, the transport sector has a critical role to play in achieving GHG emissions reductions, and stabilising the global climate. Low Carbon Mobility Transitions draws interdisciplinary insights on transport and mobilities, as a vast and complex socio-technical system. It presents 15 chapters and 6 shorter ‘case studies’ covering a diversity of themes and geographic contexts across three thematic sections: People and Place, Structures in Transition, and Innovations for Low Carbon Mobility. The three sections are highly interrelated, and with overlapping, complementing, and challenging themes. The contributions offer critical, often neglected insights into low carbon mobility transitions across the world. In doing so, Low Carbon Mobility Transitions sheds light on the place- and context-specific nature of mobility in a climate constrained world.


2017 ◽  
pp. 213-241
Author(s):  
Lidia Hrnčević

Greenhouse Gas (GHG) emissions occur, more or less, in all aspects of the petroleum industry's activities. Besides the direct emissions of some GHG, the petroleum industry is also characterised with high energy intensity usually followed by emissions of adverse gases, especially at old facilities, and also the products with high emission potential. Being the global industry and one of the major players on global market, the petroleum industry is also subjected to global regulatory provisions regarding GHG emissions. In this chapter, the impact of global climate change on the petroleum industry is discussed. The emissions from the petroleum industry are analysed with a special focus on greenhouse gases that occur in petroleum industry activities and types and sources of emissions from the petroleum industry activities. In addition, recommendations for estimation, monitoring, and reductions of GHG emissions from the petroleum industry are given.


Author(s):  
Francis Ferraro

The potential for global climate change due to the release of greenhouse gas (GHG) emissions is being debated both nationally and internationally. While many options for reducing GHG emissions are being evaluated, MSW management presents potential options for reductions and has links to other sectors (e.g., energy, industrial processes, forestry, transportation) with further GHG reduction opportunities.


Author(s):  
Jui-Chu Lin ◽  
Wei-Ming Chen ◽  
Ding-Jang Chen

Purpose In this paper, the international progress of Nationally Appropriate Mitigation Actions (NAMAs), Intended Nationally Determined Contributions (INDCs), and Nationally Determined Contributions (NDCs) under the United Nations Framework Convention on Climate Change are reviewed. The content of Taiwan’s NAMAs and INDCs are also investigated, especially with reference to actions for the electricity sector. To better understand the greenhouse gas (GHG) reduction contribution from the electricity sector, this paper aims to examine challenges and solutions for implementing a carbon trading mechanism in Taiwan’s monopolistic electricity market under the newly passed Greenhouse Gases Emissions Reduction and Management Act (GHG ERMA). Design/methodology/approach Carbon reduction strategies for the electricity sector are discussed by examining and explaining Taiwan’s official documents and the law of GHG ERMA. Findings This study finds that market mechanisms should be utilized to allocate appropriate costs and incentives for GHG reductions to transform Taiwan into a low-carbon society. Originality/value This study identifies strategies for the electricity sector to reduce GHG emissions, especially the operation of a carbon-trading scheme under a non-liberalized electricity market.


With growing concerns about global warming and greenhouse gas (GHG) emissions, there is an urgent need to evaluate and reduce the carbon footprint (CF) of surface excavation (SE). CF are GHG emissions caused by an activity or event. It is expressed in terms of the amount of carbon dioxide (COR2 R), or its equivalent of other emitted GHGs. Choosing an appropriate low-carbon emission method for SE is a vital task and involves environmental concerns due to several energy-consuming activities. Since essentially, every SE impacts the environment, it becomes very important to evaluate this impact and take necessary actions to minimize any negative consequence. The objective of this paper is to present a comprehensive overview on progress acquired over the years in understanding GHG emissions from SE and to discuss the steps in CF estimation. Publications were identified that reported GHG emissions and CF of SE over past 30 years. This literature review suggests that for most of the SE, the material production phase consumes a large amount of energy and is a major contributor of GHG emissions. Early phases of project planning should include appropriate ecological decisions consistent with the life-cycle assessment (LCA) and CF considerations. Pipe material and outside diameter should be considered during the SE to allow a detailed evaluation and reduction of their environmental impacts (EI). Incorporation of additional factors, such as cost and duration of the project into the environmental analysis is also recommended.


2020 ◽  
Vol 15 (3) ◽  
pp. 67-82
Author(s):  
David A. Ness ◽  
Ke Xing

ABSTRACT In accordance with international protocols and directions, the APEC Energy Working Group has concentrated on constraining operational energy use and greenhouse gas (GHG) emissions in cities across the Asia Pacific, especially from the widespread consumption of fossil fuels. In addition to economy level policies and recognising the different characteristics within the region, APEC has sought to take action at the town/city level via the Low-Carbon Model Town (LCMT) project, including the development of self-assessment tools and indicator systems. However, the “low carbon” landscape is changing. There is increasing recognition of embodied carbon, accompanied by the emergence of methods for its measurement, while the C40 Cities Climate Leadership Group has recently highlighted the significance of consumption-based carbon. Similarly, the Greenhouse Gas Protocol for Cities (GPC) is likely to extend its ambit from Scope 1 GHG emissions, derived from energy use within a city boundaries, and Scope 2 emissions from grid-supplied electricity, heating and / or cooling, to Scope 3 emissions derived from materials and goods produced outside the boundaries of a city but associated with construction within that city. After describing these emerging approaches and the current landscape, the paper examines the significance and implications of these changes for APEC approaches, especially in relation to the LCMT project, its indicators and the varying characteristics of towns and cities within the Asia-Pacific region. Special attention is given to the built environment, which is known to be a major contributor to operational and embodied emissions. Consistent with the theme of the Asia-Pacific Energy Sustainable Development Forum covering “sustainable development of energy and the city,” a case is put forward for the current APEC approach to be extended to encompass both embodied and consumption-based emissions.


Sign in / Sign up

Export Citation Format

Share Document