Functional Characterization of Three Novel Genes Encoding Diacylglycerol Acyltransferase (DGAT) from Oil-Rich Tubers of Cyperus esculentus

2019 ◽  
Vol 61 (1) ◽  
pp. 118-129 ◽  
Author(s):  
Dantong Liu ◽  
Hongying Ji ◽  
Zhenle Yang

Abstract Cyperus esculentus is probably the only plant that is known to accumulate large amounts of oil in its tubers. However, the underlying metabolic mechanism and regulatory factors involved in oil synthesis of tubers are still largely unclear. In this study, one gene encoding type I diacylglycerol acyltransferase (DGAT) (CeDGAT1) and two genes encoding type II DGAT (CeDGAT2a and CeDGAT2b) from C. esculentus were identified and functionally analyzed. All three DGAT genes were found to be expressed in tuber, root and leaf tissues. CeDGAT1 is highly expressed in roots and leaves, whereas CeDGAT2b is dominantly expressed in tubers. Furthermore, the temporal expression pattern of CeDGAT2b is well coordinated with the oil accumulation in developing tubers. When each CeDGAT was heterologously expressed in triacylglycerol (TAG)-deficient mutant of Saccharomyces cerevisiae, Arabidopsis thaliana wild type or its TAG1 mutant with AtDGAT1 disruption, only CeDGAT2b showed the ability to restore TAG biosynthesis with lipid body formation in yeast mutant, enhance seed oil production of Arabidopsis wild type and rescue multiple seed phenotypes of TAG1 mutant. In addition, CeDGAT2b was shown to have a substrate preference for unsaturated fatty acids toward TAG synthesis. Taken together, our results indicated that CeDGAT2b from C. esculentus is an actively functional protein and is most likely the major contributor to tuber oil biosynthesis containing common fatty acids, in contrast to oil-rich seeds and fruits where DGAT1 plays a more central role than DGAT2 in oil production accumulating normal fatty acids, whereas DGAT2 is a primary regulator for oil synthesis rich in unusual fatty acids.

Author(s):  
Hari Balaji ◽  
Selvaraj Ayyamperuma ◽  
Niladri Saha ◽  
Shyam Sundar Pottabathula ◽  
Jubie Selvaraj ◽  
...  

: Vitamin-D deficiency is a global concern. Gene mutations in the vitamin D receptor’s (VDR) ligand binding domain (LBD) variously alter the ligand binding affinity, heterodimerization with retinoid X receptor (RXR) and inhibit coactivator interactions. These LBD mutations may result in partial or total hormone unresponsiveness. A plethora of evidence report that selective long chain polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (AA) bind to the ligand-binding domain of VDR and lead to transcriptional activation. We therefore hypothesize that selective PUFAs would modulate the dynamics and kinetics of VDRs, irrespective bioactive of vitamin-D binding. The spatial arrangements of the selected PUFAs in VDR active site were examined by in-silico docking studies. The docking results revealed that PUFAs have fatty acid structure-specific binding affinity towards VDR. The calculated EPA, DHA & AA binding energies (Cdocker energy) were lesser compared to vitamin-D in wild type of VDR (PDB id: 2ZLC). Of note, the DHA has higher binding interactions to the mutated VDR (PDB id: 3VT7) when compared to the standard Vitamin-D. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding of DHA with mutated VDR complex. These findings suggest the unique roles of PUFAs in VDR activation and may offer alternate strategy to circumvent vitamin-D deficiency.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yu Gao ◽  
Yan Sun ◽  
Huiling Gao ◽  
Ying Chen ◽  
Xiaoqing Wang ◽  
...  

Abstract Background Engineering triacylglycerol (TAG) accumulation in vegetative tissues of non-food crops has become a promising way to meet our increasing demand for plant oils, especially the renewable production of biofuels. The most important target modified in this regard is diacylglycerol acyltransferase (DGAT) enzyme responsible for the final rate-limiting step in TAG biosynthesis. Cyperus esculentus is a unique plant largely accumulating oleic acid-enriched oil in its underground tubers. We speculated that DGAT derived from such oil-rich tubers could function more efficiently than that from oleaginous seeds in enhancing oil storage in vegetative tissues of tobacco, a high-yielding biomass crops. Results Three CeDGAT genes namely CeDGAT1, CeDGAT2-1 and CeDGAT2-2 were identified in C. esculentus by mining transcriptome of developing tubers. These CeDGATs were expressed in tissues tested, with CeDGAT1 highly in roots, CeDGAT2-1 abundantly in leaves, and CeDGAT2-2 predominantly in tubers. Notably, CeDGAT2-2 expression pattern was in accordance with oil dynamic accumulation during tuber development. Overexpression of CeDGAT2-2 functionally restored TAG biosynthesis in TAG-deficient yeast mutant H1246. Oleic acid level was significantly increased in CeDGAT2-2 transgenic yeast compared to the wild-type yeast and ScDGA1-expressed control under culture with and without feeding of exogenous fatty acids. Overexpressing CeDGAT2-2 in tobacco led to dramatic enhancements of leafy oil by 7.15- and 1.7-fold more compared to the wild-type control and plants expressing Arabidopsis seed-derived AtDGAT1. A substantial change in fatty acid composition was detected in leaves, with increase of oleic acid from 5.1% in the wild type to 31.33% in CeDGAT2-2-expressed tobacco and accompanied reduction of saturated fatty acids. Moreover, the elevated accumulation of oleic acid-enriched TAG in transgenic tobacco exhibited no significantly negative impact on other agronomic traits such as photosynthesis, growth rates and seed germination except for small decline of starch content. Conclusions The present data indicate that CeDGAT2-2 has a high enzyme activity to catalyze formation of TAG and a strong specificity for oleic acid-containing substrates, providing new insights into understanding oil biosynthesis mechanism in plant vegetative tissues. Overexpression of CeDGAT2-2 alone can significantly increase oleic acid-enriched oil accumulation in tobacco leaves without negative impact on other agronomy traits, showing CeDGAT2-2 as the desirable target gene in metabolic engineering to enrich oil and value-added lipids in high-biomass plants for commercial production of biofuel oils.


1986 ◽  
Vol 6 (4) ◽  
pp. 1023-1031
Author(s):  
R Terracol ◽  
N Prud'homme

In Drosophila melanogaster, the multiply repeated genes encoding 18S and 28S rRNA are located on the X and Y chromosomes. A large percentage of these repeats are interrupted in the 28S region by insertions of two types. We compared the restriction patterns from a subcloned wild-type Oregon R strain to those of spontaneous and ethyl methanesulfonate-induced bobbed mutants. Bobbed mutations were found to be deficiencies that modified the organization of the rDNA locus. Genes without insertions were deleted about twice as often as genes with type I insertions. Type II insertion genes were not decreased in number, except in the mutant having the most bobbed phenotype. Reversion to wild type was associated with an increase in gene copy number, affecting exclusively genes without insertions. One hypothesis which explains these results is the partial clustering of genes by type. The initial deletion could then be due either to an unequal crossover or to loss of material without exchange. Some of our findings indicated that deletion may be associated with an amplification phenomenon, the magnitude of which would be dependent on the amount of clustering of specific gene types at the locus.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi169-vi169
Author(s):  
Kevin Murnan ◽  
Serena Tommasini-Ghelfi ◽  
Lisa Hurley ◽  
Corey Dussold ◽  
Daniel Wahl ◽  
...  

Abstract Increased de novo synthesis, mobilization and uptake of fatty acids are required to provide sufficient lipids for membrane biogenesis in support of rapid tumor cell division and growth. In addition to their structural roles as components of the plasma membrane, fatty acid-derived lipids regulate ferroptotic cell death, a type of programmed cell death, when oxidized by iron-dependent lipoxygenase enzymes. De novo lipogenesis and the defense against oxidative lipid damage require large amounts of cytosolic NADPH. Our group has recently found that HGG up-regulate wild-type Isocitrate dehydrogenase 1 (referred to hereafter as ‘wt-IDH1high HGG’) to generate large quantities of cytosolic NADPH. RNAi-mediated knockdown of wt-IDH1, alone and in combination with radiation therapy (RT), slows the growth of patient-derived HGG xenografts, while overexpression of wt-IDH1 promotes intracranial HGG growth. Isotope tracer and liquid chromatography-based lipidomic studies indicated that wt-IDH1 supports the de novo biosynthesis of mono-unsaturated fatty acids (MUFAs) and promotes the incorporation of monounsaturated phospholipids into the plasma membrane, while displacing polyunsaturated fatty acid (PUFA) phospholipids. In addition, enhanced NADPH production in wt-IDH1high HGG increases glutathione (GSH) level, reduces reactive oxygen species (ROS), activates the phospholipid peroxidase glutathione peroxidase 4 (GPX4)-driven lipid repair pathway, and dampens the accumulation of PUFA-containing lipid peroxides, known executioners of ferroptosis. To pharmacologically target wt-IDH1,we have used and characterized wt-IDH1i-13, a first-in-class competitive α,β-unsaturated enone (AbbVie). wt-IDH1i-13 potently inhibits wt-IDH1 enzymatic activity, by covalently binding to the NADP+ binding pocket. Our data indicate that wt-IDH1i-13 promotes ferroptosis, which can be rescued by pre-treatment of cells with the peroxyl scavenger and ferroptosis inhibitor ferrostatin. wt-IDH1i-13 is brain-penetrant, and similar to genetic ablation, reduces progression and extends the survival of wt-IDH1high HGG bearing mice, alone and in combination with RT. These studies credential to wt-IDH1i-13 as a novel therapeutic modality for the treatment of wt-IDH1 gliomas.


Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 44 ◽  
Author(s):  
Julliane Carvalho Barros ◽  
Paulo E. S. Munekata ◽  
Francisco Allan Leandro de Carvalho ◽  
Mirian Pateiro ◽  
Francisco J. Barba ◽  
...  

The present study evaluated the replacement of beef fat in beef burgers using a tiger nut (Cyperus esculentus L.) oil emulsion, in order to reduce total fat and saturated fatty acids in the studied samples. Three formulations were processed: Control—100% beef fat; tiger nut 50% (TN50)—50% of beef fat replaced using tiger nut oil emulsion and tiger nut 100% (TN100)—100% of beef fat replaced by tiger nut oil emulsion. The physicochemical parameters were affected after fat replacement. Moreover, the protein and fat contents decreased in those sample with tiger nut oil emulsion, thus the formulation TN100 can be considered as “reduced fat content”. Regarding color, an increased L* and b* value parameters was observed after TN100 while the values of a* remained similar to the Control samples. The hardness, cohesiveness, gumminess and chewiness were similar in all formulations. The addition of tiger nut oil emulsion as a substitute for beef fat reduced saturated fat and increased the mono- and polyunsaturated fatty acids. Oleic acid was found to be in highest proportions in burgers. The TN100 samples were considered as acceptable by consumers. Therefore, total replacement of beef fat using tiger nut oil emulsions in beef burger resulted in a well-accepted and healthier meat product with reduced total and saturated fat contents, as well as increased unsaturated fatty acids.


1986 ◽  
Vol 6 (4) ◽  
pp. 1023-1031 ◽  
Author(s):  
R Terracol ◽  
N Prud'homme

In Drosophila melanogaster, the multiply repeated genes encoding 18S and 28S rRNA are located on the X and Y chromosomes. A large percentage of these repeats are interrupted in the 28S region by insertions of two types. We compared the restriction patterns from a subcloned wild-type Oregon R strain to those of spontaneous and ethyl methanesulfonate-induced bobbed mutants. Bobbed mutations were found to be deficiencies that modified the organization of the rDNA locus. Genes without insertions were deleted about twice as often as genes with type I insertions. Type II insertion genes were not decreased in number, except in the mutant having the most bobbed phenotype. Reversion to wild type was associated with an increase in gene copy number, affecting exclusively genes without insertions. One hypothesis which explains these results is the partial clustering of genes by type. The initial deletion could then be due either to an unequal crossover or to loss of material without exchange. Some of our findings indicated that deletion may be associated with an amplification phenomenon, the magnitude of which would be dependent on the amount of clustering of specific gene types at the locus.


2009 ◽  
Vol 8 (12) ◽  
pp. 1856-1868 ◽  
Author(s):  
Zi Teng Wang ◽  
Nico Ullrich ◽  
Sunjoo Joo ◽  
Sabine Waffenschmidt ◽  
Ursula Goodenough

ABSTRACT When the unicellular green soil alga Chlamydomonas reinhardtii is deprived of nitrogen after entering stationary phase in liquid culture, the cells produce abundant cytoplasmic lipid bodies (LBs), as well as abundant starch, via a pathway that accompanies a regulated autophagy program. After 48 h of N starvation in the presence of acetate, the wild-type LB content has increased 15-fold. When starch biosynthesis is blocked in the sta6 mutant, the LB content increases 30-fold, demonstrating that genetic manipulation can enhance LB production. The use of cell wall-less strains permitted development of a rapid “popped-cell” microscopic assay to quantitate the LB content per cell and permitted gentle cell breakage and LB isolation. The highly purified LBs contain 90% triacylglycerol (TAG) and 10% free fatty acids (FFA). The fatty acids associated with the TAGs are ∼50% saturated (C16 and C18) fatty acids and ∼50% unsaturated fatty acids, half of which are in the form of oleic acid (C18:1). The FFA are ∼50% C16 and ∼50% C18. The LB-derived TAG yield from a liter of sta6 cells at 107 cells/ml after starvation for 48 h is calculated to approach 400 mg. The LB fraction also contains low levels of charged glycerolipids, with the same profile as whole-cell charged glycerolipids, that presumably form LB membranes; chloroplast-specific neutral glycerolipids (galactolipids) are absent. Very low levels of protein are also present, but all matrix-assisted laser desorption ionization-identified species are apparent contaminants. Nitrogen stress-induced LB production in C. reinhardtii has the hallmarks of a discrete pathway that should be amenable to additional genetic and culture condition manipulation.


2001 ◽  
Vol 47 (4) ◽  
pp. 290-293 ◽  
Author(s):  
T Wauters ◽  
D Iserentant ◽  
H Verachtert

Tannic acid inhibited the growth of the yeast Saccharomyces cerevisiae. Growth medium supplementation with more nitrogen or metal ions showed that only iron ions could restore the maximal growth rate of S. cerevisiae. Tannic acid resistant mutants were previously isolated by screening for tannic acid resistance and were all cytoplasmic petite mutants. While the wild type was very sensitive to iron deprivation conditions when grown in aerobic conditions, the mutants, whether grown aerobically or anaerobically, showed the same growth rate under iron-limited conditions as under iron-repleted conditions. Also, the wild type grown anaerobically was not affected by iron-limited conditions. Cytoplasmic petite mutants obtained by ethidium bromide mutagenesis behaved like the other mutants. During iron limitation, the wild type showed a reduced oxygen uptake rate. Maximal growth rate of the wild type in iron-limited conditions could be restored by the addition to the media of unsaturated fatty acids and sterol. Iron deprivation caused by tannic acid may thus affect the synthesis of a functional respiratory chain as well as the synthesis of unsaturated fatty acids and (or) sterol.Key words: Saccharomyces cerevisiae, tannic acid resistance, iron deprivation, cytoplasmic petite mutant.


2007 ◽  
Vol 8 (1) ◽  
pp. 5 ◽  
Author(s):  
Silvio Bastidas ◽  
Eduardo Peña ◽  
Rafael Reyes ◽  
José Pérez ◽  
William Tolosa

<p>Se realizó transferencia de genes desde la especie Nolí (<em>Elaeis oleifera</em>) a la especie Palma de aceite (<em>Elaeis guineensis</em>) mediante retrocruzamientos con el propósito de obtener un cultivar que tuviera alta producción de frutos y aceite por unidad de área, baja tasa de crecimiento, tolerancia a enfermedades, y aceite con alto contenido de ácidos grasos insaturados y carotenos. La primera generación de retrocruzamiento RC1 se obtuvo mediante polinización controlada entre palmas del híbrido interespecífico F1 (<em>Elaeis oleifera </em>x <em>Elaeis guineensis</em>) usadas como progenitor femenino, con palmas de la especie <em>Elaeis guineensis </em>como progenitor masculino. En 1995 se establecieron en campo las descendencias de cinco cruces RC1, planteando como hipótesis de segregación que el 50% de los descendientes corresponderían al genotipo de palma de aceite y el 50% restante al genotipo del híbrido RC1 con carga genética africana (75% <em>E. guineensis </em>y 25% <em>E. oleifera</em>). Los datos de campo se analizaron con base en un diseño completamente al azar con arreglo jerárquico y desigual número de repeticiones por tratamiento; para probar la hipótesis se aplicó la prueba de Chi-cuadrado (χ2). En el cuarto año de producción los híbridos RC1 promisorios alcanzaron 35,0 t·ha<sup>-1</sup> de fruto, con 19,6% de aceite y una producción anual estimada de aceite de 6,3 t·ha<sup>-1</sup>. Estos híbridos crecieron en promedio 25,8 cm por año, característica que aumenta a más de 40 años la expectativa de vida útil de la plantación. Hasta la fecha presentan tolerancia a cuatro enfermedades de carácter letal que afectan la Palma de aceite en Colombia, puesto que durante siete años de evaluación no se han presentado síntomas. El aceite de estos híbridos contiene mayor concentración de ácidos grasos insaturados y carotenos que el de la Palma de aceite.</p><p> </p><p><strong>Agronomic behavior of the BC1 hybrid cultivar of oil palm (<em>Elaeis oleifera </em>x <em>Elaeis guineensis</em>) x <em>Elaeis guineensis</em></strong></p><p>A transfer of genes from the species Nolí (<em>Elaeis oleifera</em>) to the oil palm species (<em>Elaeis guineensis</em>) was made using backcrosses, with the objective of obtaining a cultivar with high fruit and oil production per unit of area, slow rate of growth, disease tolerance, and oil with high content of unsaturated fatty acids and carotenes. The first backcross generation, BC1, was obtained using controlled pollination between palms of the interspecific F1 hybrid (<em>Elaeis oleifera </em>x <em>Elaeis guineensis</em>) used as the female parent with palms of the species <em>Elaeis guineensis </em>as the male progenitor. In 1995 the progeny of five BC1s were established in the field, proposing the segregation hypothesis that 50% of the progeny would correspond to the genotype of oil palm and the remaining 50% to the genotype of the BC1 hybrid with a load of African genes (75% <em>E. guineensis </em>and 25% <em>E. oleifera</em>). The field data were analyzed based on a completely random design with hierarchical array and uneven number of repetitions per treatment; Chi<sup>2</sup> was used to test the hypothesis. In the fourth year of production the promising BC1s reached 35 t·ha<sup>-1</sup> of fruit, with 19.6% of oil and an estimated oil production of 6.3 t·ha<sup>-1</sup> per year. These hybrids grew an average of 25.8 cm per year, a characteristic that increases the useful life expectancy of a plantation to more than 40 years. To date, these hybrids show tolerance to four deadly diseases that affect the oil palm in Colombia, since no symptoms have been observed during the eight years of evaluation. The oil from these hybrids contains greater concentrations of unsaturated fatty acids than that of oil palm.</p>


2021 ◽  
Author(s):  
◽  
Franziska Stegemann

Polyketides are highly valuable natural products, which are widely used as pharmaceuticals due to their beneficial characteristics, comprising antibacterial, antifungal, immunosuppressive, and antitumor properties, among others. Their biosynthesis is performed by large and complex multiproteins, the polyketide synthases (PKSs). This study solely focuses on the class of type I PKSs, which arrange all their enzymatic domains on one or more polypeptides. Despite their high medical value, little is known about mechanistic details in PKSs. One central domain is the acyl transferase (AT), which is present in all PKSs and channels small acyl substrates into the enzyme. More precisely, the AT loads the substrates onto the essential acyl carrier protein (ACP), which subsequently shuttles the substrates and all intermediates for condensation and modification to additional domains to build the final polyketide. Some PKSs use their domains several times during biosynthesis and work iteratively – these are called iterative PKSs. Others feature several sets of domains, each being used only once during biosynthesis – these PKSs are called modular PKSs. All PKSs or PKS modules consist of minimum three essential domains to connect the acyl substrates. Three modifying domains are optional and can enlarge the minimal set. According to the domain composition, the acyl substrate is fully reduced, partly reduced, or not reduced at all. This variation of modifying domains accounts for the huge structural and therefore functional variety of polyketides. Even though the structure of fatty acids is not exactly reminiscent of polyketides, their biosynthetic pathways are closely related. Fatty acid biosynthesis is carried out by fatty acid synthases (FASs), which share many similarities with PKSs. Both megasynthases feature the same domains, performing the same reactions to connect and modify small acyl substrates. In contrast to PKSs, FASs always contain one full set of modifying domains which is used iteratively, leading to fully reduced fatty acids. The present thesis extensively analyzes the AT of different PKSs in its substrate selectivity, AT-ACP domain-domain interaction, and enzymatic kinetic properties. The following key findings are revealed through comparison: 1.) ATs of PKSs appear slower than the ones of FASs, which may reflect the different scopes of biosynthetic pathways. Fatty acids as essential compounds in all organisms are needed in high amounts for physiological functions, whereas polyketides as secondary metabolites only require basal concentrations to take effect. 2.) The slower ATs from modular PKSs do not load non-native substrates even in absence of the native substrates. This is different to the faster ATs from iterative PKSs and FASs, which indicates high substrate specificity solely for the ATs from modular PKSs and emphasizes their role as gatekeepers in polyketide synthesis. 3.) The substrate selectivity can emerge in either the first or the second step of the AT-mediated ACP loading and is not assured by a hydrolytic proofreading function. Moreover, a mutational study on the AT-ACP interaction in the modular PKS 6-deoxyerythronolide B synthase (DEBS) shows that single surface point mutations can influence AT-mediated reactions in a complex manner. Data reveals high enzyme kinetic plasticity of the AT-ACP interaction, which was also recently demonstrated for the interaction in a type II FAS. Based on these findings, the mammalian FAS is engineered towards a modular PKS-like as- sembly line with the long-term goal to rationally synthesize new products. Basically, three important aspects need to be considered: 1.) AT’s loading needs to be splitted in specific loading of a priming substrate by a priming AT and in specific loading of an elongation substrate by an elongation AT. 2.) FAS-based elongation modules need to be designed with varying domain compositions for introducing functional groups in the product. 3.) Covalent and non-covalent linkers need to be designed for connection of priming and elongation modules. This study focuses on the first aspect, splitting loading of priming and elongation substrates. An elongation substrate-specific AT is installed in the mammalian FAS via domain swapping. Since ATs from modular PKSs were proven to be substrate specific, these are used to exchange the mammalian FAS AT. This work demonstrates that it is extremely challenging to create stable and functional chimeras, but first essential steps are taken. Proper domain boundaries for AT swapping are established and a stable chimera with 70 % wild type AT activity is created. However, this chimera is only of limited value for application in an elongation module due to the intrinsic slow turnover rate of the wild type AT. Using another PKS AT, a stable elongation module is designed and analyzed in its activity in combination with a priming module. These experiments demonstrate that the loading of priming substrates are successfully suppressed in the elongation module, but nonetheless only minor turnover rates are detected in the assembly line. ...


Sign in / Sign up

Export Citation Format

Share Document