scholarly journals The effect of intermittent lighting on metabolizable energy intake and heat production of male broilers

2000 ◽  
Vol 79 (2) ◽  
pp. 167-171 ◽  
Author(s):  
S. Ohtani ◽  
S. Leeson
2005 ◽  
Vol 34 (3) ◽  
pp. 1006-1016 ◽  
Author(s):  
Douglas Sampaio Henrique ◽  
Ricardo Augusto Mendonça Vieira ◽  
Pedro Antônio Muniz Malafaia ◽  
Maurício Cordeiro Mancini ◽  
André Luigi Gonçalves

Data of 320 animals were obtained from eight comparative slaughter studies performed under tropical conditions and used to estimate the total efficiency of utilization of the metabolizable energy intake (MEI), which varied from 77 to 419 kcal kg-0.75d-1. The provided data also contained direct measures of the recovered energy (RE), which allowed calculating the heat production (HE) by difference. The RE was regressed on MEI and deviations from linearity were evaluated by using the F-test. The respective estimates of the fasting heat production and the intercept and the slope that composes the relationship between RE and MEI were 73 kcal kg-0.75d-1, 42 kcal kg-0.75d-1 and 0.37. Hence, the total efficiency was estimated by dividing the net energy for maintenance and growth by the metabolizable energy intake. The estimated total efficiency of the ME utilization and analogous estimates based on the beef cattle NRC model were employed in an additional study to evaluate their predictive powers in terms of the mean square deviations for both temperate and tropical conditions. The two approaches presented similar predictive powers but the proposed one had a 22% lower mean squared deviation even with its more simplified structure.


1985 ◽  
Vol 53 (3) ◽  
pp. 491-499 ◽  
Author(s):  
Penny Coyer ◽  
M. Cox ◽  
J. P. W. Rivers ◽  
D. J. Millward

1. The effect of corticosterone treatment on energy balance and heat production was investigated in growing rats. Animals were treated with daily subcutaneous injections of a vehicle containing 0, 50 or 100 mg corticosterone/kg for 5 d.2. Measurements of digestible energy intake and urinary energy losses showed that corticosterone treatment resulted in a depression of metabolizable energy intake due to elevated urinary energy losses resulting from massive glucosuria.3. Measurements of the metabolizable energy intake and the change in carcass energy indicated that at 50 mg/kg energy deposition and heat production were reduced, whilst at 100 mg/kg energy deposition was completely abolished with heat production increased. Postprandial oxygen consumption was unchanged at 50 mg/kg and increased at 100 mg/kg.4. Factorial analysis of these results based on reported values for the energy cost of protein and fat deposition indicated that (a) the depression of total heat production at 50 mg/kg could be entirely accounted for by the concomitant suppression of growth, and (b) the elevation of total and postprandial heat production at 100 mg/kg reflected a specific influence of corticosterone on thermogenesis.5. The significance of these findings is discussed in the light of reports that corticosterone in low doses suppresses heat production.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 158-159
Author(s):  
Phillip A Lancaster

Abstract Metabolizable energy required for maintenance varies with diet and empty body chemical composition. The objective was to quantify the relationships of dietary characteristics and empty body chemical composition with heat production. A literature search was performed to compile data (31 studies, 214 treatment means) on metabolizable energy intake (MEI) and composition of empty body gain in growing steers and heifers. Data analysis were performed using R statistical package for mixed models with study as random variable. Nonlinear regression of energy gain (EG) on MEI indicated the relationship was not curvilinear in this data set, likely due to lack of negative values of EG. Further analyses were conducted using a linear model. Dietary characteristics of roughage level (0–100% of diet DM) and CP (10–25% diet DM), metabolizable energy concentration (1.3–3.3 Mcal/kg DM), and roughage type were evaluated in the model. Roughage sources were categorized into no roughage, silage, hay, pellets, silage + pellets, and hay + pellets. Of the empty body chemical components, proportion of fat in the empty body (EBFp) and in the gain (EBFgp) had a significant (P < 0.001) interaction with MEI on HP. Of the dietary characteristics, roughage level and type had a significant (P < 0.001) interaction with MEI on HP; however, when both were included in the model, roughage type was not significant (P > 0.10). The final model was 47.01 ± 12.54 + 0.630 ± 0.05*MEI – 132.3 ± 64.7*EBFp + 0.0007 ± 0.0001*MEI*Roughage level + 0.753 ± 0.24*MEI*EBFp – 0.268 ± 0.032*MEI*EBFgp with an R2 of 0.919 and an AIC of 1614 compared with 0.867 and 1695 for the simple linear regression model of HP on MEI. In conclusion, greater empty body fat decreased the intercept, and greater empty body fat proportion and levels of roughage in the diet increased the slope between HP and MEI, whereas greater percentage of fat in the empty body gain decreased the slope between HP and MEI.


1986 ◽  
Vol 42 (2) ◽  
pp. 257-268 ◽  
Author(s):  
G. M. Cronin ◽  
J. M. F. M. van Tartwijk ◽  
W. van der Hel ◽  
M. W. A. Verstegen

ABSTRACTIn response to tethering, many sows develop seemingly non-functional repetitive behaviour (stereotypies), which may be performed for several hours in a day.The quality and quantity of activity performed by sows with different degrees of adaptation to tethering was studied in relation to energy expenditure. Three groups of five sows were recognized: (1) High, sows which showed a high incidence of stereotyped activity after prolonged tethering; (2) T/Low, sows with limited experience of tethers; and (3) G/Low, the same sows as in group 2 after regrouping.High sows were about three times more active than T/Low sows: the proportions of time involved in 24 h were 0·35 and 0·13 respectively. Most of the former sows' activity was in the form of sterotypies. The activity level of the G/Low sows was between that of the two tether treatments (proportionately 0·17 of 24 h). Both tethered treatments spent proportionately about 0·05 of 24 h in using drinkers compared with proportionately less than 0·02 of the time for the G/Low sows.High sows produced proportionately 0·36 more heat than T/Low sows during the 12-h light period in each day. During this period, proportionately 0·40 and 0·20 of heat production from High and T/Low sows was associated with activity. The diurnal activity of the G/Low sows was associated with proportionately 0·24 of heat production.Stereotypies and excessive drinker use accounted for proportionately 0·86, 0·52 and 0·24 of the activity of High, T/Low and G/Low sows. The proportions of metabolizable energy intake required for these activities were 0·23, 0·07 and 0·04 respectively for the three treatments. The study concludes that tethering is stressful when sows develop, and then indulge in frequent coping behavioural patterns which increase metabolic rate.


2015 ◽  
Vol 99 (6) ◽  
pp. 1025-1030 ◽  
Author(s):  
M. Thes ◽  
N. Koeber ◽  
J. Fritz ◽  
F. Wendel ◽  
B. Dobenecker ◽  
...  

2002 ◽  
Vol 138 (2) ◽  
pp. 221-226 ◽  
Author(s):  
A. ALLAN DEGEN ◽  
B. A. YOUNG

Body mass was measured and body composition and energy requirements were estimated in sheep at four air temperatures (0 °C to 30 °C) and at four levels of energy offered (4715 to 11785 kJ/day) at a time when the sheep reached a constant body mass. Final body mass was affected mainly by metabolizable energy intake and, to a lesser extent, by air temperature, whereas maintenance requirements were affected mainly by air temperature. Mean energy requirements were similar and lowest at 20 °C and 30 °C (407·5 and 410·5 kJ/kg0·75, respectively) and increased with a decrease in air temperature (528·8 kJ/kg0·75 at 10 °C and 713·3 kJ/kg0·75 at 0 °C). Absolute total body water volume was related positively to metabolizable energy intake and to air temperature. Absolute fat, protein and ash contents were all affected positively by metabolizable energy intake and tended to be related positively to air temperature. In proportion to body mass, total body water volume decreased with an increase in metabolizable energy intake and with an increase in air temperature. Proportionate fat content increased with an increase in metabolizable energy intake and tended to increase with an increase in air temperature. In contrast, proportionate protein content decreased with an increase in metabolizable energy intake and tended to decrease with an increase in air temperature. In all cases, the multiple linear regression using both air temperature and metabolizable energy intake improved the fit over the simple linear regressions of either air temperature or metabolizable energy intake and lowered the standard error of the estimate. The fit was further improved and the standard error of the estimate was further lowered using a polynomial model with both independent variables to fit the data, since there was little change in the measurements between 20 °C and 30 °C, as both air temperatures were most likely within the thermal neutral zone of the sheep. It was concluded that total body energy content, total body water volume, fat and protein content of sheep of the same body mass differed or tended to differ when kept at different air temperatures.


The Condor ◽  
2001 ◽  
Vol 103 (1) ◽  
pp. 108-117
Author(s):  
James A. Robinson ◽  
Keith C. Hamer ◽  
Lorraine S. Chivers

Abstract Arctic Terns (Sterna paradisaea) and Common Terns (S. hirundo) are similar in many aspects of their breeding ecology, but Common Terns generally lay three eggs per clutch whereas Arctic Terns lay two. In our study, Common Terns had a higher rate of food delivery and energy supply to the nest and higher nest attendance, indicating that they made trips of shorter average duration. This suggests that the number of chicks raised by these two species was primarily limited by the rate at which parents could supply food. However, estimated daily metabolizable energy intake of chicks was about 30% higher in Common Terns than in Arctic Terns. Common Tern chicks apparently spent a higher proportion of daily energy intake on maintenance of body temperature. It remains unknown whether this difference was because Common Tern parents could not brood three chicks as effectively as Arctic Terns brooded two or because the energy requirements for heat production in the third-hatched Common Tern chick were particularly high. If brooding did play a less important role in the energy budgets of Common Terns, the number of chicks that Arctic Terns could raise may have been limited not only by the rate at which parents could supply food to the nest but also by the requirements of chicks for brooding. We suggest that more detailed studies on the role of brooding constraints in limiting brood size in these species are required to clarify this matter.


1999 ◽  
Vol 133 (4) ◽  
pp. 409-417
Author(s):  
D. E. KIRKPATRICK ◽  
R. W. J. STEEN

An experiment was carried out in 1994 to examine energy and nitrogen utilization of lambs offered two contrasting grass-based diets. The two forages, which were from the same parent herbage, were grass silage and grass which was conserved by freezing. They were offered as sole diets or supplemented with either 250 or 500 g concentrates per kg total dry matter intake (DMI) to give a total of six experimental treatments. Seventy-two Dutch Texel × Greyface (Border Leicester × Blackface) lambs, consisting of 36 males which were initially 36 (S.D. 4·9) kg liveweight and 36 females which were initially 34 (S.D. 2·5) kg liveweight were used. Ensiling significantly increased apparent digestibility of dry matter, energy and nitrogen (P<0·001), but had no significant effect on methane energy loss as a proportion of gross energy intake, metabolizable energy intake (MEI), heat production, energy retained, efficiency of utilization of energy for growth (kg) or nitrogen retention. Supplementation of forage with concentrates resulted in a curvilinear decrease in heat production expressed as a proportion of MEI (P<0·05) and a linear increase in energy retention, expressed as an absolute value or as a proportion of MEI (P<0·05). Supplementation of forage tended to increase kg when calculated using Agricultural Research Council estimates of maintenance energy requirements, but had no significant effect when alternative estimates of maintenance were used. It is concluded that ensiling had no effect on efficiency of utilization of energy or nitrogen as measured by indirect calorimetry.


Sign in / Sign up

Export Citation Format

Share Document