scholarly journals Estimation of the total efficiency of metabolizable energy utilization for maintenance and growth by cattle in tropical conditions

2005 ◽  
Vol 34 (3) ◽  
pp. 1006-1016 ◽  
Author(s):  
Douglas Sampaio Henrique ◽  
Ricardo Augusto Mendonça Vieira ◽  
Pedro Antônio Muniz Malafaia ◽  
Maurício Cordeiro Mancini ◽  
André Luigi Gonçalves

Data of 320 animals were obtained from eight comparative slaughter studies performed under tropical conditions and used to estimate the total efficiency of utilization of the metabolizable energy intake (MEI), which varied from 77 to 419 kcal kg-0.75d-1. The provided data also contained direct measures of the recovered energy (RE), which allowed calculating the heat production (HE) by difference. The RE was regressed on MEI and deviations from linearity were evaluated by using the F-test. The respective estimates of the fasting heat production and the intercept and the slope that composes the relationship between RE and MEI were 73 kcal kg-0.75d-1, 42 kcal kg-0.75d-1 and 0.37. Hence, the total efficiency was estimated by dividing the net energy for maintenance and growth by the metabolizable energy intake. The estimated total efficiency of the ME utilization and analogous estimates based on the beef cattle NRC model were employed in an additional study to evaluate their predictive powers in terms of the mean square deviations for both temperate and tropical conditions. The two approaches presented similar predictive powers but the proposed one had a 22% lower mean squared deviation even with its more simplified structure.

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 158-159
Author(s):  
Phillip A Lancaster

Abstract Metabolizable energy required for maintenance varies with diet and empty body chemical composition. The objective was to quantify the relationships of dietary characteristics and empty body chemical composition with heat production. A literature search was performed to compile data (31 studies, 214 treatment means) on metabolizable energy intake (MEI) and composition of empty body gain in growing steers and heifers. Data analysis were performed using R statistical package for mixed models with study as random variable. Nonlinear regression of energy gain (EG) on MEI indicated the relationship was not curvilinear in this data set, likely due to lack of negative values of EG. Further analyses were conducted using a linear model. Dietary characteristics of roughage level (0–100% of diet DM) and CP (10–25% diet DM), metabolizable energy concentration (1.3–3.3 Mcal/kg DM), and roughage type were evaluated in the model. Roughage sources were categorized into no roughage, silage, hay, pellets, silage + pellets, and hay + pellets. Of the empty body chemical components, proportion of fat in the empty body (EBFp) and in the gain (EBFgp) had a significant (P < 0.001) interaction with MEI on HP. Of the dietary characteristics, roughage level and type had a significant (P < 0.001) interaction with MEI on HP; however, when both were included in the model, roughage type was not significant (P > 0.10). The final model was 47.01 ± 12.54 + 0.630 ± 0.05*MEI – 132.3 ± 64.7*EBFp + 0.0007 ± 0.0001*MEI*Roughage level + 0.753 ± 0.24*MEI*EBFp – 0.268 ± 0.032*MEI*EBFgp with an R2 of 0.919 and an AIC of 1614 compared with 0.867 and 1695 for the simple linear regression model of HP on MEI. In conclusion, greater empty body fat decreased the intercept, and greater empty body fat proportion and levels of roughage in the diet increased the slope between HP and MEI, whereas greater percentage of fat in the empty body gain decreased the slope between HP and MEI.


Author(s):  
Bonjin Koo ◽  
Olumide Adeshakin ◽  
Charles Martin Nyachoti

Abstract An experiment was performed to evaluate the energy content of extruded-expelled soybean meal (EESBM) and the effects of heat treatment on energy utilization in growing pigs. Eighteen growing barrows (18.03 ± 0.61 kg initial body weight) were individually housed in metabolism crates and randomly allotted to one of three dietary treatments (six replicates/treatment). The three experimental diets were: a corn-soybean meal-based basal diet and two test diets with simple substitution of a basal diet with intact EESBM or heat-treated EESBM (heat-EESBM) at a 7:3 ratio. Intact EESBM was autoclaved at 121°C for 60 min to make heat-treated EESBM. Pigs were fed the experimental diets for 16 d, including 10 d for adaptation and 6 d for total collection of feces and urine. Pigs were then moved into indirect calorimetry chambers to determine 24-h heat production and 12-h fasting heat production. The energy content of EESBM was calculated using the difference method. Data were analyzed using the Mixed procedure of SAS with the individual pig as the experimental unit. Pigs fed heat-EESBM diets showed lower (P < 0.05) apparent total tract digestibility of dry matter (DM), gross energy, and nitrogen than those fed intact EESBM. A trend (P ≤ 0.10) was observed for greater heat increments in pigs fed intact EESBM than those fed heat-EESBM. This resulted in intact EESBM having greater (P < 0.05) digestible energy (DE) and metabolizable energy (ME) contents than heat-EESBM. However, no difference was observed in net energy (NE) contents between intact EESBM and heat-EESBM, showing a tendency (P ≤ 0.10) toward an increase in NE/ME efficiency in heat-EESBM, but comparable NE contents between intact and heat-EESBM. In conclusion, respective values of DE, ME, and NE are 4,591 kcal/kg, 4,099 kcal/kg, and 3,189 kcal/kg in intact EESBM on a DM basis. It is recommended to use NE values of feedstuffs that are exposed to heat for accurate diet formulation.


1982 ◽  
Vol 34 (3) ◽  
pp. 355-357 ◽  
Author(s):  
R. T. Cowan ◽  
J. J. Robinson ◽  
I. McDonald

ABSTRACTData from three comparative slaughter experiments involving a total of 73 ewes were used to study the influence of body fat content at the start of lactation (X1 kg) and of metabolizable energy intake (X2, MJ/day), on the rate of loss of body fat by lactating ewes over the first 6 weeks of lactation (Y, g/day). The relationship was described by the equation:Thus the rate of fat loss was greater for ewes with higher initial fat contents, but the differential became less as metabolizable energy intake increased. Since increases in body fatness depress food intake it was not possible to prevent loss of body fat during early lactation in fat ewes given high concentrate diets ad libitum. The likely response in milk yield to increase in body fatness at parturition is therefore strongly dependent on the relative levels of body fatness and metabolizable energy intake. The value of any improvement in condition of the ewe at parturition may be considerable when metabolizable energy intake during lactation is low but much less when it is expected to be high.


1969 ◽  
Vol 72 (3) ◽  
pp. 479-489 ◽  
Author(s):  
D. W. F. Shannon ◽  
W. O. Brown

SUMMARYExperiments to determine the net availabilities of the metabolizable energy (NAME) of a cereal-based diet and a maize-oil diet for maintenance and lipogenesis and the effect of environmental temperature on the NAME of the cereal-based diet are described. Four 1- to 2-year-old Light Sussex cockerels were used.The relationship between ME intake and energy retention was linear for each diet. The NAME'S of the cereal-based diet given at 22° and 28 °C (70.6 ± 1.83 % and 73.6 ± 3.54%, respectively) were significantly (P < 0.05) lower than the NAME of the maize-oil diet (84.1 ± 1.85%). It is concluded that the beneficial effect of maize oil on the efficiency of energy utilization is due to a reduced heat increment rather than a reduction in the basal component of the heat production. The higher efficiency from the maize-oil diet led to an increase in the energy retained as fat.The mean fasting heat production at 28 °C was 15 % lower than at 22 °C (43.2 ± 1.45 and 51.2 ± 1.09 kcal/kg/day, respectively). The NAME of the cereal-based diet was not significantly different when the birds were kept at 22° or 28 °C. The lower metabolic rate at 28 °C was reflected in a lower maintenance requirement and in an increase in the deposition of body fat.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 166-166
Author(s):  
Bonjin Koo ◽  
Olumide Adeshakin ◽  
Martin Nyachoti

Abstract An experiment was performed to evaluate the energy contents of extruded-expelled soybean meal (EESBM) and the effects of thermal treatment on energy utilization in growing pigs. Eighteen growing barrows (18.03 ± 0.61 kg initial body weight) were individually housed in metabolism crates and randomly allotted to one of three dietary treatments to give six replicates per treatment. The three experimental diets were: a corn-soybean meal-based basal diet and two test diets with simple substitution of a basal diet with intact EESBM or heat-treated EESBM in a 70:30 ratio. Intact EESBM was autoclaved at 120°C for 60 mins to make heat-treated EESBM (heat-EESBM). Pigs were fed the experimental diets for 16 d, including 10 d for adaptation and 6 d for total collection of feces and urine. Pigs were then moved into indirect calorimetry chambers to determine 24-h heat production and 12-h fasting heat production. The energy contents of the tested DESBM were calculated by using the difference method. All data were analyzed using the Mixed procedure of SAS with the individual pig as the experimental unit. Pigs fed heat-EESBM diets showed lower (P &lt; 0.05) apparent total tract digestibility of dry matter (DM), gross energy, and nitrogen than those fed intact EESBM. A trend (P &lt; 0.10) was observed for greater heat increments in pigs fed intact EESBM than those fed heat-EESBM. This resulted in intact EESBM having greater (P &lt; 0.05) digestible energy (DE) and metabolizable energy (ME) contents than heat-EESBM but comparable net energy contents between intact and heat-EESBM. In conclusion, respective values of DE, ME, and net energy are 4,591 kcal/kg, 4,099 kcal/kg, and 3,242 kcal/kg on a DM basis. However, thermal damage during EESBM production should be considered in terms of DE and ME content of EESBM fed to growing pigs.


1994 ◽  
Vol 59 (1) ◽  
pp. 43-47 ◽  
Author(s):  
B. J. Tolkamp ◽  
J. J. M. H. Ketelaars

AbstractOverall efficiency of energy utilization (i.e. total net energy intake as a fraction of metabolizable energy intake) in cattle given food ad libitum was calculated from information included in the United Kingdom energy evaluation system as published by the Agricultural Research Council. For growing cattle (live weight 250 kg), overall efficiency was estimated for five levels of diet metabolizability (ranging from q = 0·45 to q = 0·65) for each of two diet types: coarse/long roughage and fine/pelleted diets. The overall efficiencies varied from 0·58 to 0·62 and were not systematically affected by diet type or diet metabolizability. For lactating cattle (live weight 600 kg), overall efficiency was also calculated for five diets with metabolizability ranging from 0·45 to 0·65. Calculations were made for cows at equilibrium intake (i.e. zero energy balance) and at milk production levels proportionately 0·30 higher or lower than those attained at equilibrium intake. Overall efficiencies varied from 0·60 to 0·63 and were not systematically affected by diet metabolizability.It is concluded that, in practical cattle production systems with ad libitum feeding, the net energy content of food may be estimated at 0·6 of the metabolizable energy content (or 0·5 of the digestible energy content), irrespective of diet type, diet metabolizability or productive function.


1964 ◽  
Vol 15 (1) ◽  
pp. 100 ◽  
Author(s):  
N McCGraham

The energy, carbon, and nitrogen exchanges of nine castrate male sheep in moderately fat condition were determined with the aid of closed-circuit indirect calorimetry. Five of the sheep were kept on a diet containing equal parts of chopped lucerne hay and chopped wheaten hay (mixture A). The other four were given a pelleted 5:4:1 mixture of lucerne hay, maize meal, and peanut meal (mixture B). Each mixture was given at five different rates and each sheep was fasted on two occasions. Digestible energy averaged 62% for mixture A and 76% for mixture B, irrespective of feeding level. Of this, 10% was lost as methane and 5 to 13%, depending on level of feeding, in the urine, leaving on the average 81% metabolizable. Thus metabolizable energy amounted to 51 and 62% of the gross energy intake with mixtures A and B respectively, while net energy was 89 and 97% of the metabolizable energy intake at the lowest level of feeding and 61 and 69% at the highest. At any given level of metabolizable energy, mixture B provided 30% more digestible nitrogen than mixture A, but, allowing for differences between sheep in nitrogen economy, any additional energy obtained from mixture B was stored in fat. Consideration of the present results, along with data from earlier experiments with fattening sheep and cattle, showed that the net availability of metabolizable energy, both for maintenance and fattening, decreases regularly as the quantity of digestible fibre increases. Net energy could be estimated more accurately from this relation than by use of the commonly used factors of Kellner.


2003 ◽  
Vol 140 (4) ◽  
pp. 451-459 ◽  
Author(s):  
H. DARMANI KUHI ◽  
E. KEBREAB ◽  
S. LOPEZ ◽  
J. FRANCE

Data from six studies with male broilers fed diets covering a wide range of energy and protein were used in the current two analyses. In the first analysis, five models, specifically re-parameterized for analysing energy balance data, were evaluated for their ability to determine metabolizable energy intake at maintenance and efficiency of utilization of metabolizable energy intake for producing gain. In addition to the straight line, two types of functional form were used. They were forms describing (i) diminishing returns behaviour (monomolecular and rectangular hyperbola) and (ii) sigmoidal behaviour with a fixed point of inflection (Gompertz and logistic). These models determined metabolizable energy requirement for maintenance to be in the range 437–573 kJ/kg of body weight/day depending on the model. The values determined for average net energy requirement for body weight gain varied from 7·9 to 11·2 kJ/g of body weight. These values show good agreement with previous studies. In the second analysis, three types of function were assessed as candidates for describing the relationship between body weight and cumulative metabolizable energy intake. The functions used were: (a) monomolecular (diminishing returns behaviour), (b) Gompertz (smooth sigmoidal behaviour with a fixed point of inflection) and (c) Lopez, France and Richards (diminishing returns and sigmoidal behaviour with a variable point of inflection). The results of this analysis demonstrated that equations capable of mimicking the law of diminishing returns describe accurately the relationship between body weight and cumulative metabolizable energy intake in broilers.


Sign in / Sign up

Export Citation Format

Share Document