scholarly journals Decellularized small intestine submucosa/polylactic-co-glycolic acid composite scaffold for potential application in hypopharyngeal and cervical esophageal tissue repair

2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Shijie Qiu ◽  
Lijin Liang ◽  
Peng Zou ◽  
Qi Chen

Abstract There has been an increase in the incidence of hypopharyngeal and cervical esophageal cancer worldwide, and hence growing needs for hypopharyngeal and cervical esophageal tissue repair. This work produced a bi-layer composite scaffold with decellularized small intestine submucosa and polylactic-co-glycolic acid, which resembled the layered architectures of its intended tissues. The decellularized small intestine submucosa contained minimal residual DNA (52.5 ± 1.2 ng/mg) and the composite scaffold exhibited satisfactory mechanical properties (a tensile modulus of 21.1 ± 4.8 MPa, an ultimate tensile strength of 14.0 ± 2.9 MPa and a failure strain of 26.9 ± 5.1%). The interactions between cells and the respective layers of the scaffold were characterized by CCK-8 assays, immunostaining and Western blotting. Desirable cell proliferation and phenotypic behaviors were observed. These results have provided an important basis for the next-step in vivo studies of the scaffold, and bode well for its future clinical applications.

2013 ◽  
Vol 101 (9) ◽  
pp. 585-593 ◽  
Author(s):  
M. Ozkan ◽  
F. Z. Biber Muftuler ◽  
A. Yurt Kilcar ◽  
E. I. Medine ◽  
P. Unak

Summary It is known that medicinal plants like olive have biological activities due to their flavonoid content such as olueropein, tyrosol, hydroxytyrosol etc. In current study, hydroxytrosol (HT) which is one of the major phenolic compounds in olive, olive leaves and olive oil, was isolated after methanol extraction and purification of olive leaves which are grown in the northern Anatolia region of Turkey. The isolated HT was radiolabeled with 131I (131I-HT) and the bioaffinity of this radiolabeled component of olive leaves extract was investigated by using in vivo/in vitro methods. It was found that HT could be radiolabeled with 131I in yields of 95.6±4.4% (n = 8), and in vivo studies showed that 131I-HT is taken up by urinary bladder, stomach, small intestine, large intestine, breast and prostate. Significant incorporation of activity was observed in cell lines via in vitro studies.


Author(s):  
Seyedeh Fatemeh Hashemi ◽  
Mohsen Mehrabi ◽  
Arian Ehterami ◽  
Anneh Mohammad Gharravi ◽  
Fateme Sadat Bitaraf ◽  
...  

Gut ◽  
1997 ◽  
Vol 41 (3) ◽  
pp. 344-353 ◽  
Author(s):  
S Somasundaram ◽  
S Rafi ◽  
J Hayllar ◽  
G Sigthorsson ◽  
M Jacob ◽  
...  

Background—The “topical” effect of non-steroidal anti-inflammatory drugs (NSAIDs) seems to be an important cause of NSAID induced gastrointestinal damage.Aim—To examine the possible mechanism of the “topical” phase of damage in the small intestine.Methods—Electron microscopy and subcellular organelle marker enzyme studies were done in rat small intestine after oral administration of indomethacin (doses varied between 5 and 30 mg/kg). The effect of conventional and non-acidic NSAIDs on rat liver mitochondrial respiration was measured in vitro in a Clarke-type oxygen electrode.Results—The subcellular organelle marker enzymes showed mitochondrial and brush border involvement within an hour of indomethacin administration. Electron microscopy showed dose dependent mitochondrial changes following indomethacin administration consistent with uncoupling of oxidative phosphorylation (or inhibition of electron transport) which were indistinguishable from those seen with the uncoupler dinitrophenol. Parenteral indomethacin caused similar changes, but not in rats with ligated bile ducts. A range of NSAIDs, but not paracetamol or non-acidic NSAIDs which have a favourable gastrointestinal tolerability profile, uncoupled oxidative phosphorylation in vitro at micromolar concentrations and inhibited respiration at higher concentrations. In vivo studies with nabumetone and aspirin further suggested that uncoupling or inhibition of electron transport underlies the “topical” phase of NSAID induced damage.Conclusion—Collectively, these studies suggest that NSAID induced changes in mitochondrial energy production may be an important component of the “topical” phase of damage induction.


2020 ◽  
Vol 7 (4) ◽  
pp. 339-348 ◽  
Author(s):  
Pan Zhao ◽  
Xiang Li ◽  
Qin Fang ◽  
Fanglin Wang ◽  
Qiang Ao ◽  
...  

Abstract With the development of tissue engineering, the required biomaterials need to have the ability to promote cell adhesion and proliferation in vitro and in vivo. Especially, surface modification of the scaffold material has a great influence on biocompatibility and functionality of materials. The small intestine submucosa (SIS) is an extracellular matrix isolated from the submucosal layer of porcine jejunum, which has good tissue mechanical properties and regenerative activity, and is suitable for cell adhesion, proliferation and differentiation. In recent years, SIS is widely used in different areas of tissue reconstruction, such as blood vessels, bone, cartilage, bladder and ureter, etc. This paper discusses the main methods for surface modification of SIS to improve and optimize the performance of SIS bioscaffolds, including functional group bonding, protein adsorption, mineral coating, topography and formatting modification and drug combination. In addition, the reasonable combination of these methods also offers great improvement on SIS surface modification. This article makes a shallow review of the surface modification of SIS and its application in tissue engineering.


Author(s):  
Sunandita Sarker ◽  
Ryan Jones ◽  
Gabriel Chow ◽  
Benjamin Terry

Abstract Despite being the preferred route of drug administration, the oral formulation of biological drugs is limited due to its intrinsic instability, low permeability, and physical, chemical and immunological barriers. Various innovative swallowable technologies such as drug-loaded, dissolvable microneedles, mucoadhesive patches, and various microdevices present unique drug-carrying capabilities. The current work presents a novel soft stent platform that can facilitate contact between the small intestine tissue and drug carriers to enhance drug absorption and increase residence time. This study aims to prove the concept of this novel platform and determine if the soft stent will retain orally to the ileocecal valve longer than a capsule-shaped bolus. Benchtop studies on an intestinal simulator showed successful retention of the soft stent compared to a control capsule. In vivo studies in pig models also showed that the soft stent was retained longer than the control capsule. Overall, this study shows promise that this novel platform could be used for oral drug delivery of biologics.


Sign in / Sign up

Export Citation Format

Share Document