Isolation of hydroxytyrosol from olive leaves extract, radioiodination and investigation of bioaffinity using in vivo/in vitro methods

2013 ◽  
Vol 101 (9) ◽  
pp. 585-593 ◽  
Author(s):  
M. Ozkan ◽  
F. Z. Biber Muftuler ◽  
A. Yurt Kilcar ◽  
E. I. Medine ◽  
P. Unak

Summary It is known that medicinal plants like olive have biological activities due to their flavonoid content such as olueropein, tyrosol, hydroxytyrosol etc. In current study, hydroxytrosol (HT) which is one of the major phenolic compounds in olive, olive leaves and olive oil, was isolated after methanol extraction and purification of olive leaves which are grown in the northern Anatolia region of Turkey. The isolated HT was radiolabeled with 131I (131I-HT) and the bioaffinity of this radiolabeled component of olive leaves extract was investigated by using in vivo/in vitro methods. It was found that HT could be radiolabeled with 131I in yields of 95.6±4.4% (n = 8), and in vivo studies showed that 131I-HT is taken up by urinary bladder, stomach, small intestine, large intestine, breast and prostate. Significant incorporation of activity was observed in cell lines via in vitro studies.

Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 2001 ◽  
Author(s):  
Ana Karković Marković ◽  
Jelena Torić ◽  
Monika Barbarić ◽  
Cvijeta Jakobušić Brala

The Mediterranean diet and olive oil as its quintessential part are almost synonymous with a healthy way of eating and living nowadays. This kind of diet has been highly appreciated and is widely recognized for being associated with many favorable effects, such as reduced incidence of different chronic diseases and prolonged longevity. Although olive oil polyphenols present a minor fraction in the composition of olive oil, they seem to be of great importance when it comes to the health benefits, and interest in their biological and potential therapeutic effects is huge. There is a growing body of in vitro and in vivo studies, as well as intervention-based clinical trials, revealing new aspects of already known and many new, previously unknown activities and health effects of these compounds. This review summarizes recent findings regarding biological activities, metabolism and bioavailability of the major olive oil phenolic compounds—hydroxytyrosol, tyrosol, oleuropein, oleocanthal and oleacein—the most important being their antiatherogenic, cardioprotective, anticancer, neuroprotective and endocrine effects. The evidence presented in the review concludes that these phenolic compounds have great pharmacological potential, however, further studies are still required.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2046 ◽  
Author(s):  
Bianca Eugenia Ștefănescu ◽  
Katalin Szabo ◽  
Andrei Mocan ◽  
Gianina Crişan

Some species of the Ericaceae family have been intensively studied because of the beneficial health impact, known since ancient times, of their chemical components. Since most studies focus on the effects of fruit consumption, this review aims to highlight the phenolic components present in the leaves. For this purpose, five species from Ericaceae family (bilberry—Vaccinium myrtillus L., lingonberry—V. vitis-idaea L., bog bilberry—V. uliginosum L., blueberry—V. corymbosum L. and bearberry—Arctostapylos uva-ursi L.) were considered, four of which can be found in spontaneous flora. The chemical composition of the leaves revealed three major phenolic compounds: chlorogenic acid, quercetin and arbutin. The health promoting functions of these compounds, such as antioxidant and anti-inflammatory properties that could have preventive effects for cardiovascular disease, neurodegenerative disorders, cancer, and obesity, have been exemplified by both in vitro and in vivo studies in this review. Furthermore, the importance of bioaccessibility and bioavailability of the phenolic compounds have been summarized. The findings highlight the fact that leaves of some Ericaceae species deserve increased attention and should be studied more profoundly for their biological activities, especially those from spontaneous flora.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2868
Author(s):  
Zhenhua Li ◽  
Xiaoyan Zhao ◽  
Xiaowei Zhang ◽  
Hongkai Liu

Sorghum is the fifth most commonly used cereal worldwide and is a rich source of many bioactive compounds. We summarized phenolic compounds and carotenoids, vitamin E, amines, and phytosterols in sorghum grains. Recently, with the development of detection technology, new bioactive compounds such as formononetin, glycitein, and ononin have been detected. In addition, multiple in vitro and in vivo studies have shown that sorghum grains have extensive bio-logical activities, such as antioxidative, anticancer, antidiabetic, antiinflammatory, and antiobesity properties. Finally, with the establishment of sorghum phenolic compounds database, the bound phenolics and their biological activities and the mechanisms of biological activities of sorghum bioactive compounds using clinical trials may be researched.


2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 952
Author(s):  
Małgorzata Chrząszcz ◽  
Barbara Krzemińska ◽  
Rafał Celiński ◽  
Katarzyna Szewczyk

The genus Cephalaria, belonging to the Caprifoliaceae family, is a rich source of interesting secondary metabolites, including mainly saponins which display a variety of biological activities, such as immunomodulatory, antimicrobial and hemolytic effects. Besides these compounds, flavonoids and phenolic acids were identified in Cephalaria species. Cephalaria is employed in traditional medicine e.g., to cure cardiac and lung diseases, rheumatism, and regulate menstruation. In this review we focus on the phenolic compound composition and antioxidative activity of Cephalaria species. The antioxidant effect can be explained by flavonoids present in all parts of these plants. However, future efforts should concentrate more on in vitro and in vivo studies and also on clinical trials in order to confirm the possibility of using these plants as natural antioxidants for the pharmacology, food or cosmetic industries.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3207
Author(s):  
Kumaresan Sakthiabirami ◽  
Vaiyapuri Soundharrajan ◽  
Jin-Ho Kang ◽  
Yunzhi Peter Yang ◽  
Sang-Won Park

The design of zirconia-based scaffolds using conventional techniques for bone-regeneration applications has been studied extensively. Similar to dental applications, the use of three-dimensional (3D) zirconia-based ceramics for bone tissue engineering (BTE) has recently attracted considerable attention because of their high mechanical strength and biocompatibility. However, techniques to fabricate zirconia-based scaffolds for bone regeneration are in a stage of infancy. Hence, the biological activities of zirconia-based ceramics for bone-regeneration applications have not been fully investigated, in contrast to the well-established calcium phosphate-based ceramics for bone-regeneration applications. This paper outlines recent research developments and challenges concerning numerous three-dimensional (3D) zirconia-based scaffolds and reviews the associated fundamental fabrication techniques, key 3D fabrication developments and practical encounters to identify the optimal 3D fabrication technique for obtaining 3D zirconia-based scaffolds suitable for real-world applications. This review mainly summarized the articles that focused on in vitro and in vivo studies along with the fundamental mechanical characterizations on the 3D zirconia-based scaffolds.


2021 ◽  
Vol 42 ◽  
pp. e67649
Author(s):  
Marta Sánchez ◽  
Elena González-Burgos ◽  
Irene Iglesias ◽  
M. Pilar Gómez-Serranillos Cuadrado

Valeriana officinalis L. (Caprifoliaceae family) has been traditionally used to treat mild nervous tension and sleep problems. The basis of these activities are mainly attributed to valerenic acid through the modulation of the GABA receptor. Moreover, V. officinalis is claimed to have other biological activities such as cardiovascular benefits, anticancer, antimicrobial and spasmolytic.  The current review aims to update the biological and pharmacological studies (in vitro, in vivo and clinical trials) of V. officinalis and its major secondary metabolites in order to guide future research. Databases PubMed, Science Direct and Scopus were used for literature search including original papers written in English and published between 2014 and 2020. There have been identified 33 articles which met inclusion criteria. Most of these works were performed with V. officinalis extracts and only a few papers (in vitro and in vivo studies) evaluated the activity of isolated compounds (valerenic acid and volvalerenal acid K). In vitro studies focused on studying antioxidant and neuroprotective activity. In vivo studies and clinical trials mainly investigated activities on the nervous system (anticonvulsant activity, antidepressant, cognitive problems, anxiety and sleep disorders). Just few studies were focused on other different activities, highlight effects on symptoms of premenstrual and postmenopausal syndromes. Valeriana officinalis continues to be one of the medicinal plants most used by today's society for its therapeutic properties and whose biological and pharmacological activities continue to arouse great scientific interest as evidenced in recent publications. This review shows scientific evidence on traditional uses of V. officinalis on nervous system.


Antioxidants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 188 ◽  
Author(s):  
Filip Vlavcheski ◽  
Mariah Young ◽  
Evangelia Tsiani

Insulin resistance, a pathological condition characterized by defects in insulin action leads to the development of Type 2 diabetes mellitus (T2DM), a disease which is currently on the rise that pose an enormous economic burden to healthcare systems worldwide. The current treatment and prevention strategies are considerably lacking in number and efficacy and therefore new targeted therapies and preventative strategies are urgently needed. Plant-derived chemicals such as metformin, derived from the French lilac, have been used to treat/manage insulin resistance and T2DM. Other plant-derived chemicals which are not yet discovered, may have superior properties to prevent and manage T2DM and thus research into this area is highly justifiable. Hydroxytyrosol is a phenolic phytochemical found in olive leaves and olive oil reported to have antioxidant, anti-inflammatory, anticancer and antidiabetic properties. The present review summarizes the current in vitro and in vivo studies examining the antidiabetic properties of hydroxytyrosol and investigating the mechanisms of its action.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3303 ◽  
Author(s):  
Wanda Mączka ◽  
Katarzyna Wińska ◽  
Małgorzata Grabarczyk

Geraniol is a monoterpenic alcohol with a pleasant rose-like aroma, known as an important ingredient in many essential oils, and is used commercially as a fragrance compound in cosmetic and household products. However, geraniol has a number of biological activities, such as antioxidant and anti-inflammatory properties. In addition, numerous in vitro and in vivo studies have shown the activity of geraniol against prostate, bowel, liver, kidney and skin cancer. It can induce apoptosis and increase the expression of proapoptotic proteins. The synergy of this with other drugs may further increase the range of chemotherapeutic agents. The antibacterial activity of this compound was also observed on respiratory pathogens, skin and food-derived strains. This review discusses some of the most important uses of geraniol.


Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 224 ◽  
Author(s):  
Natalya V. Krylova ◽  
Svetlana P. Ermakova ◽  
Vyacheslav F. Lavrov ◽  
Irina A. Leneva ◽  
Galina G. Kompanets ◽  
...  

The enzymatic depolymerization of fucoidans from brown algae allowed the production of their standardized derivatives with different biological activities. This work aimed to compare the antiviral activities of native (FeF) and modified with enzyme (FeHMP) fucoidans from F. evanescens. The cytotoxicity and antiviral activities of the FeF and FeHMP against herpes viruses (HSV-1, HSV-2), enterovirus (ECHO-1), and human immunodeficiency virus (HIV-1) in Vero and human MT-4 cell lines were examined by methylthiazolyltetrazolium bromide (MTT) and cytopathic effect (CPE) reduction assays, respectively. The efficacy of fucoidans in vivo was evaluated in the outbred mice model of vaginitis caused by HSV-2. We have shown that both FeF and FeHMP significantly inhibited virus-induced CPE in vitro and were more effective against HSV. FeF exhibited antiviral activity against HSV-2 with a selective index (SI) > 40, and FeHMP with SI ˃ 20, when they were added before virus infection or at the early stages of the HSV-2 lifecycle. Furthermore, in vivo studies showed that after intraperitoneal administration (10 mg/kg), both FeF and FeHMP protected mice from lethal intravaginal HSV-2 infection to approximately the same degree (44–56%). Thus, FeF and FeHMP have comparable potency against several DNA and RNA viruses, allowing us to consider the studied fucoidans as promising broad-spectrum antivirals.


Sign in / Sign up

Export Citation Format

Share Document