scholarly journals Corrigendum to: Sleep duration over 28 years, cognition, gray matter volume, and white matter microstructure: a prospective cohort study

SLEEP ◽  
2020 ◽  
Vol 43 (7) ◽  
Author(s):  
Jennifer Zitser ◽  
Melis Anatürk ◽  
Enikő Zsoldos ◽  
Abda Mahmood ◽  
Nicola Filippini ◽  
...  
SLEEP ◽  
2020 ◽  
Vol 43 (5) ◽  
Author(s):  
Jennifer Zitser ◽  
Melis Anatürk ◽  
Enikő Zsoldos ◽  
Abda Mahmood ◽  
Nicola Filippini ◽  
...  

Abstract Study Objectives To examine the association between sleep duration trajectories over 28 years and measures of cognition, gray matter volume, and white matter microstructure. We hypothesize that consistently meeting sleep guidelines that recommend at least 7 hours of sleep per night will be associated with better cognition, greater gray matter volumes, higher fractional anisotropy, and lower radial diffusivity values. Methods We studied 613 participants (age 42.3 ± 5.03 years at baseline) who self-reported sleep duration at five time points between 1985 and 2013, and who had cognitive testing and magnetic resonance imaging administered at a single timepoint between 2012 and 2016. We applied latent class growth analysis to estimate membership into trajectory groups based on self-reported sleep duration over time. Analysis of gray matter volumes was carried out using FSL Voxel-Based-Morphometry and white matter microstructure using Tract Based Spatial Statistics. We assessed group differences in cognitive and MRI outcomes using nonparametric permutation testing. Results Latent class growth analysis identified four trajectory groups, with an average sleep duration of 5.4 ± 0.2 hours (5%, N = 29), 6.2 ± 0.3 hours (37%, N = 228), 7.0 ± 0.2 hours (45%, N = 278), and 7.9 ± 0.3 hours (13%, N = 78). No differences in cognition, gray matter, and white matter measures were detected between groups. Conclusions Our null findings suggest that current sleep guidelines that recommend at least 7 hours of sleep per night may not be supported in relation to an association between sleep patterns and cognitive function or brain structure.


2019 ◽  
Vol 15 (7) ◽  
pp. P207-P209
Author(s):  
Oriol Grau-Rivera ◽  
Grégory Operto ◽  
Carles Falcon ◽  
Raffaele Cacciaglia ◽  
Gonzalo Sánchez-Benavides ◽  
...  

2011 ◽  
Vol 70 (11) ◽  
pp. 1083-1090 ◽  
Author(s):  
Mojtaba Zarei ◽  
David Mataix-Cols ◽  
Isobel Heyman ◽  
Morgan Hough ◽  
Joanne Doherty ◽  
...  

2018 ◽  
Vol 115 (48) ◽  
pp. 12295-12300 ◽  
Author(s):  
Julius M. Kernbach ◽  
B. T. Thomas Yeo ◽  
Jonathan Smallwood ◽  
Daniel S. Margulies ◽  
Michel Thiebaut de Schotten ◽  
...  

The human default mode network (DMN) is implicated in several unique mental capacities. In this study, we tested whether brain-wide interregional communication in the DMN can be derived from population variability in intrinsic activity fluctuations, gray-matter morphology, and fiber tract anatomy. In a sample of 10,000 UK Biobank participants, pattern-learning algorithms revealed functional coupling states in the DMN that are linked to connectivity profiles between other macroscopical brain networks. In addition, DMN gray matter volume was covaried with white matter microstructure of the fornix. Collectively, functional and structural patterns unmasked a possible division of labor within major DMN nodes: Subregions most critical for cortical network interplay were adjacent to subregions most predictive of fornix fibers from the hippocampus that processes memories and places.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Malo Gaubert ◽  
Catharina Lange ◽  
Antoine Garnier-Crussard ◽  
Theresa Köbe ◽  
Salma Bougacha ◽  
...  

Abstract Background White matter hyperintensities (WMH) are frequently found in Alzheimer’s disease (AD). Commonly considered as a marker of cerebrovascular disease, regional WMH may be related to pathological hallmarks of AD, including beta-amyloid (Aβ) plaques and neurodegeneration. The aim of this study was to examine the regional distribution of WMH associated with Aβ burden, glucose hypometabolism, and gray matter volume reduction. Methods In a total of 155 participants (IMAP+ cohort) across the cognitive continuum from normal cognition to AD dementia, FLAIR MRI, AV45-PET, FDG-PET, and T1 MRI were acquired. WMH were automatically segmented from FLAIR images. Mean levels of neocortical Aβ deposition (AV45-PET), temporo-parietal glucose metabolism (FDG-PET), and medial-temporal gray matter volume (GMV) were extracted from processed images using established AD meta-signature templates. Associations between AD brain biomarkers and WMH, as assessed in region-of-interest and voxel-wise, were examined, adjusting for age, sex, education, and systolic blood pressure. Results There were no significant associations between global Aβ burden and region-specific WMH. Voxel-wise WMH in the splenium of the corpus callosum correlated with greater Aβ deposition at a more liberal threshold. Region- and voxel-based WMH in the posterior corpus callosum, along with parietal, occipital, and frontal areas, were associated with lower temporo-parietal glucose metabolism. Similarly, lower medial-temporal GMV correlated with WMH in the posterior corpus callosum in addition to parietal, occipital, and fontal areas. Conclusions This study demonstrates that local white matter damage is correlated with multimodal brain biomarkers of AD. Our results highlight modality-specific topographic patterns of WMH, which converged in the posterior white matter. Overall, these cross-sectional findings corroborate associations of regional WMH with AD-typical Aß deposition and neurodegeneration.


2021 ◽  
pp. 089198872098891
Author(s):  
Regina Eun Young Kim ◽  
Robert Douglas Abbott ◽  
Soriul Kim ◽  
Robert Joseph Thomas ◽  
Chang-Ho Yun ◽  
...  

This study aimed to evaluate the effect of sleep duration on brain structures in the presence versus absence of sleep apnea in middle-aged and older individuals. The study investigated a population-based sample of 2,560 individuals, aged 49-80 years. The presence of sleep apnea and self-reported sleep duration were examined in relation to gray matter volume (GMV) in total and lobar brain regions. We identified ranges of sleep duration associated with maximal GMV using quadratic regression and bootstrap sampling. A significant quadratic association between sleep duration and GMV was observed in total and lobar brain regions of men with sleep apnea. In the fully adjusted model, optimal sleep durations associated with peak GMV between brain regions ranged from 6.7 to 7.0 hours. Shorter and longer sleep durations were associated with lower GMV in total and 4 sub-regions of the brain in men with sleep apnea.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012869
Author(s):  
Raffaello Bonacchi ◽  
Alessandro Meani ◽  
Elisabetta Pagani ◽  
Olga Marchesi ◽  
Andrea Falini ◽  
...  

Objective:To investigate whether age at onset influences brain gray matter volume (GMV) and white matter (WM) microstructural abnormalities in adult multiple sclerosis (MS) patients, given its influence on clinical phenotype and disease course.Method:In this hypothesis-driven cross-sectional study, we enrolled 67 pediatric-onset MS (POMS) patients and 143 sex- and disease duration (DD)-matched randomly-selected adult-onset MS (AOMS) patients, together with 208 healthy controls. All subjects underwent neurological evaluation and 3T MRI acquisition. MRI variables were standardized based on healthy controls, to remove effects of age and sex. Associations with DD in POMS and AOMS patients were studied with linear models. Time to reach clinical and MRI milestones was assessed with product-limit approach.Results:At DD=1 year, GMV and WM fractional anisotropy (FA) were abnormal in AOMS but not in POMS patients. Significant interaction of age at onset (POMS vs AOMS) into the association with DD was found for GMV and WM FA. The crossing point of regression lines in POMS and AOMS patients was at 20 years of DD for GMV and 14 for WM FA. For POMS and AOMS patients, median DD was 29 and 19 years to reach Expanded Disability Status Scale=3 (p<0.001), 31 and 26 years to reach abnormal Paced Auditory Serial Addition Task-3 (p=0.01), 24 and 18 years to reach abnormal GMV (p=0.04), and 19 and 17 years to reach abnormal WM FA (p=0.36).Conclusions:Younger patients are initially resilient to MS-related damage. Then, compensatory mechanisms start failing with loss of WM integrity, followed by GM atrophy and finally disability.


2018 ◽  
Vol 11 ◽  
pp. 1178623X1879992 ◽  
Author(s):  
Vikas Pareek ◽  
VP Subramanyam Rallabandi ◽  
Prasun K Roy

We investigate the relationship between Gray matter’s volume vis-a-vis White matter’s integrity indices, such Axial diffusivity, Radial diffusivity, Mean diffusivity, and Fractional anisotropy, in individuals undergoing healthy aging. We investigated MRI scans of 177 adults across 20 to 85 years. We used Voxel-based morphometry, and FDT-FSL analysis for estimation of Gray matter volume and White matter’s diffusion indices respectively. Across the life span, we observed an inter-relationship between the Gray matter and White matter, namely that both Axial diffusivity and Mean Diffusivity show strong correlation with Gray matter volume, along the aging process. Furthermore, across all ages the Fractional anisotropy and Mean diffusivity are found to be significantly reduced in females when compared to males, but there are no significant gender differences in Axial Diffusivity and Radial diffusivity. We conclude that for both genders across all ages, the Gray matter’s Volume is strongly correlated with White matter’s Axial Diffusivity and Mean Diffusivity, while being weakly correlated with Fractional Anisotropy. Our study clarifies the multi-scale relationship in brain tissue, by elucidating how the White matter’s micro-structural parameters influences the Gray matter’s macro-structural characteristics, during healthy aging across the life-span.


Sign in / Sign up

Export Citation Format

Share Document