scholarly journals 0028 Sleep Duration Influences the Kinetics of Stress Granule Formation

SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A11-A12
Author(s):  
M K Dougherty ◽  
C Saul ◽  
L Carman ◽  
M D Nelson ◽  
J C Tudor

Abstract Introduction Stress granules are non-membrane bound aggregates of messenger ribonucleoproteins that are biomarkers of cellular stress. It has been shown in cells in vitro that suppression of the mammalian target of rapamycin (mTOR) pathway and its non-mammalian orthologue target of rapamycin (TOR) is associated with an increase in stress granule formation. It has also been shown that the mTOR pathway is suppressed in response to sleep deprivation in mice. Despite the possible connection via the TOR/mTOR pathway, there has not been any previous evidence linking sleep deprivation with stress granule formation. Methods Our present investigation uses the nematode Caenorhabditis elegans to model how stress granule formation and clearance are modified by sleep duration. We developed novel strains of C. elegans that model each type of sleep deprivation or enhancement and have RFP-labeled PAB-1 protein, a key component of stress granules. In addition to modifying sleep duration via genetic means, we also sleep deprived wildtype fluorescently labeled animals using mechanical disturbances. Results Animals with enhanced stress-induced sleep have stress granules that are smaller in size and cleared faster than wildtype, while sleep deprived animals have granules that are slower to clear (F11,473 = 7.752, ***p < 0.0001, one-way ANOVA). Animals that were manually deprived of stress-induced sleep were similarly slower to clear stress granules (F5,209 = 5.476 ***p < 0.0001, one-way ANOVA). Interestingly, animals genetically deprived of developmentally-timed sleep does not appear to have more stress granules in the middle of their sleep period than the sleeping wildtype stage (F2,42 = 2.659, p = 0.0729, one-way ANOVA). Conclusion This work demonstrates that the amount of sleep affects stress granule kinetics, which impacts the flow of genetic information inside cells. Support This work was supported by an R15GM122058 (NIH), John P. McNulty scholars program (SJU) and summer scholars program (SJU).

2016 ◽  
Vol 37 (4) ◽  
Author(s):  
Lucas C. Reineke ◽  
Wei-Chih Tsai ◽  
Antrix Jain ◽  
Jason T. Kaelber ◽  
Sung Yun Jung ◽  
...  

ABSTRACT Stress granules (SGs) are large macromolecular aggregates that contain translation initiation complexes and mRNAs. Stress granule formation coincides with translational repression, and stress granules actively signal to mediate cell fate decisions by signaling to the translation apparatus to (i) maintain translational repression, (ii) mount various transcriptional responses, including innate immunity, and (iii) repress apoptosis. Previous work showed that G3BP1 is phosphorylated at serine 149, which regulates G3BP1 oligomerization, stress granule assembly, and RNase activity intrinsic to G3BP1. However, the kinase that phosphorylates G3BP1 was not identified, leaving a key step in stress granule regulation uncharacterized. Here, using chemical inhibition, genetic depletion, and overexpression experiments, we show that casein kinase 2 (CK2) promotes stress granule dynamics. These results link CK2 activity with SG disassembly. We also show that casein kinase 2 phosphorylates G3BP1 at serine 149 in vitro and in cells. These data support a role for casein kinase 2 in regulation of protein synthesis by downregulating stress granule formation through G3BP1.


2019 ◽  
Author(s):  
Devin Tauber ◽  
Gabriel Tauber ◽  
Anthony Khong ◽  
Briana Van Treeck ◽  
Jerry Pelletier ◽  
...  

SUMMARYStress granules are condensates of non-translating mRNAs and proteins involved in the stress response and neurodegenerative diseases. Stress granules form in part through intermolecular RNA-RNA interactions, although the process of RNA condensation is poorly understood. In vitro, we demonstrate that RNA is effectively recruited to the surfaces of RNA or RNP condensates. We demonstrate that the DEAD-box protein eIF4A reduces RNA condensation in vitro and limits stress granule formation in cells. This defines a purpose for eIF4A to limit intermolecular RNA-RNA interactions in cells, thereby allowing for proper RNP function. These results establish an important role for DEAD-box proteins as ATP-dependent RNA chaperones that can limit the intermolecular condensation and entanglement of RNA, analogous to the function of proteins like HSP70 in combatting protein aggregates.eTOC BlurbStress granules are formed in part by the process of RNA condensation, which is mediated by and promotes trans RNA-RNA interactions. The essential DEAD-box protein and translation initiation factor eIF4A limits stress granule formation by reducing RNA condensation through its function as an ATP-dependent RNA binding protein, behaving analogously to how protein chaperones like HSP70 combat protein aggregates.HighlightsRNA condensates promote intermolecular RNA-RNA interactions at their surfaceseIF4A limits the recruitment of RNAs to stress granules in cellseIF4A reduces the nucleation of stress granules in cellsRecombinant eIF4A1 inhibits the condensation of RNA in vitro in an ATP-dependent manner


2018 ◽  
Vol 115 (11) ◽  
pp. 2734-2739 ◽  
Author(s):  
Briana Van Treeck ◽  
David S. W. Protter ◽  
Tyler Matheny ◽  
Anthony Khong ◽  
Christopher D. Link ◽  
...  

Stress granules are higher order assemblies of nontranslating mRNAs and proteins that form when translation initiation is inhibited. Stress granules are thought to form by protein–protein interactions of RNA-binding proteins. We demonstrate RNA homopolymers or purified cellular RNA forms assemblies in vitro analogous to stress granules. Remarkably, under conditions representative of an intracellular stress response, the mRNAs enriched in assemblies from total yeast RNA largely recapitulate the stress granule transcriptome. We suggest stress granules are formed by a summation of protein–protein and RNA–RNA interactions, with RNA self-assembly likely to contribute to other RNP assemblies wherever there is a high local concentration of RNA. RNA assembly in vitro is also increased by GR and PR dipeptide repeats, which are known to increase stress granule formation in cells. Since GR and PR dipeptides are involved in neurodegenerative diseases, this suggests that perturbations increasing RNA–RNA assembly in cells could lead to disease.


2020 ◽  
Vol 27 ◽  
Author(s):  
Naser-Aldin Lashgari ◽  
Nazanin Momeni Roudsari ◽  
Saeideh Momtaz ◽  
Negar Ghanaatian ◽  
Parichehr Kohansal ◽  
...  

: Inflammatory bowel disease (IBD) is a general term for a group of chronic and progressive disorders. Several cellular and biomolecular pathways are implicated in the pathogenesis of IBD, yet the etiology is unclear. Activation of the mammalian target of rapamycin (mTOR) pathway in the intestinal epithelial cells was also shown to induce inflammation. This review focuses on the inhibition of the mTOR signaling pathway and its potential application in treating IBD. We also provide an overview on plant-derived compounds that are beneficial for the IBD management through modulation of the mTOR pathway. Data were extracted from clinical, in vitro and in vivo studies published in English between 1995 and May 2019, which were collected from PubMed, Google Scholar, Scopus and Cochrane library databases. Results of various studies implied that inhibition of the mTOR signaling pathway downregulates the inflammatory processes and cytokines involved in IBD. In this context, a number of natural products might reverse the pathological features of the disease. Furthermore, mTOR provides a novel drug target for IBD. Comprehensive clinical studies are required to confirm the efficacy of mTOR inhibitors in treating IBD.


2019 ◽  
Vol 94 (3) ◽  
Author(s):  
Wanda Christ ◽  
Janne Tynell ◽  
Jonas Klingström

ABSTRACT Virus infection frequently triggers host cell stress signaling resulting in translational arrest; as a consequence, many viruses employ means to modulate the host stress response. Hantaviruses are negative-sense, single-stranded RNA viruses known to inhibit host innate immune responses and apoptosis, but their impact on host cell stress signaling remains largely unknown. In this study, we investigated activation of host cell stress responses during hantavirus infection. We show that hantavirus infection causes transient formation of stress granules (SGs) but does so in only a limited proportion of infected cells. Our data indicate some cell type-specific and hantavirus species-specific variability in SG prevalence and show SG formation to be dependent on the activation of protein kinase R (PKR). Hantavirus infection inhibited PKR-dependent SG formation, which could account for the transient nature and low prevalence of SG formation observed during hantavirus infection. In addition, we report only limited colocalization of hantaviral proteins or RNA with SGs and show evidence indicating hantavirus-mediated inhibition of PKR-like endoplasmic reticulum (ER) kinase (PERK). IMPORTANCE Our work presents the first report on stress granule formation during hantavirus infection. We show that hantavirus infection actively inhibits stress granule formation, thereby escaping the detrimental effects on global translation imposed by host stress signaling. Our results highlight a previously uncharacterized aspect of hantavirus-host interactions with possible implications for how hantaviruses are able to cause persistent infection in natural hosts and for pathogenesis.


2019 ◽  
Author(s):  
Richard J. Wheeler ◽  
Hyun O. Lee ◽  
Ina Poser ◽  
Arun Pal ◽  
Thom Doeleman ◽  
...  

AbstractAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with few avenues for treatment. Many proteins implicated in ALS associate with stress granules, which are examples of liquid-like compartments formed by phase separation. Aberrant phase transition of stress granules has been implicated in disease, suggesting that modulation of phase transitions could be a possible therapeutic route. Here, we combine cell-based and protein-based screens to show that lipoamide, and its related compound lipoic acid, reduce the propensity of stress granule proteins to aggregate in vitro. More significantly, they also prevented aggregation of proteins over the life time of Caenorhabditis elegans. Observations that they prevent dieback of ALS patient-derived (FUS mutant) motor neuron axons in culture and recover motor defects in Drosophila melanogaster expressing FUS mutants suggest plausibility as effective therapeutics. Our results suggest that altering phase behaviour of stress granule proteins in the cytoplasm could be a novel route to treat ALS.


2020 ◽  
Vol 94 (22) ◽  
Author(s):  
Guillaume Beauclair ◽  
Felix Streicher ◽  
Maxime Chazal ◽  
Daniela Bruni ◽  
Sarah Lesage ◽  
...  

ABSTRACT Yellow fever virus (YFV) is an RNA virus primarily targeting the liver. Severe YF cases are responsible for hemorrhagic fever, plausibly precipitated by excessive proinflammatory cytokine response. Pathogen recognition receptors (PRRs), such as the cytoplasmic retinoic acid inducible gene I (RIG-I)-like receptors (RLRs), and the viral RNA sensor protein kinase R (PKR), are known to initiate a proinflammatory response upon recognition of viral genomes. Here, we sought to reveal the main determinants responsible for the acute cytokine expression occurring in human hepatocytes following YFV infection. Using a RIG-I-defective human hepatoma cell line, we found that RIG-I largely contributes to cytokine secretion upon YFV infection. In infected RIG-I-proficient hepatoma cells, RIG-I was localized in stress granules. These granules are large aggregates of stalled translation preinitiation complexes known to concentrate RLRs and PKR and are so far recognized as hubs orchestrating RNA virus sensing. Stable knockdown of PKR in hepatoma cells revealed that PKR contributes to both stress granule formation and cytokine induction upon YFV infection. However, stress granule disruption did not affect the cytokine response to YFV infection, as assessed by small interfering RNA (siRNA)-knockdown-mediated inhibition of stress granule assembly. Finally, no viral RNA was detected in stress granules using a fluorescence in situ hybridization approach coupled with immunofluorescence. Our findings suggest that both RIG-I and PKR mediate proinflammatory cytokine induction in YFV-infected hepatocytes, in a stress granule-independent manner. Therefore, by showing the uncoupling of the cytokine response from the stress granule formation, our model challenges the current view in which stress granules are required for the mounting of the acute antiviral response. IMPORTANCE Yellow fever is a mosquito-borne acute hemorrhagic disease caused by yellow fever virus (YFV). The mechanisms responsible for its pathogenesis remain largely unknown, although increased inflammation has been linked to worsened outcome. YFV targets the liver, where it primarily infects hepatocytes. We found that two RNA-sensing proteins, RIG-I and PKR, participate in the induction of proinflammatory mediators in human hepatocytes infected with YFV. We show that YFV infection promotes the formation of cytoplasmic structures, termed stress granules, in a PKR- but not RIG-I-dependent manner. While stress granules were previously postulated to be essential platforms for immune activation, we found that they are not required for the production of proinflammatory mediators upon YFV infection. Collectively, our work uncovered molecular events triggered by the replication of YFV, which could prove instrumental in clarifying the pathogenesis of the disease, with possible repercussions for disease management.


2009 ◽  
Vol 84 (7) ◽  
pp. 3654-3665 ◽  
Author(s):  
Joanna Piotrowska ◽  
Spencer J. Hansen ◽  
Nogi Park ◽  
Katarzyna Jamka ◽  
Peter Sarnow ◽  
...  

ABSTRACT Stress granules are sites of mRNA storage formed in response to a variety of stresses, including viral infections. Here, the mechanisms and consequences of stress granule formation during poliovirus infection were examined. The results indicate that stress granules containing T-cell-restricted intracellular antigen 1 (TIA-1) and mRNA are stably constituted in infected cells despite lacking intact RasGAP SH3-domain binding protein 1 (G3BP) and eukaryotic initiation factor 4G. Fluorescent in situ hybridization revealed that stress granules in infected cells do not contain significant amounts of viral positive-strand RNA. Infection does not prevent stress granule formation in response to heat shock, indicating that poliovirus does not block de novo stress granule formation. A mutant TIA-1 protein that prevents stress granule formation during oxidative stress also prevents formation in infected cells. However, stress granule formation during infection is more dependent upon ongoing transcription than is formation during oxidative stress or heat shock. Furthermore, Sam68 is recruited to stress granules in infected cells but not to stress granules formed in response to oxidative stress or heat shock. These results demonstrate that stress granule formation in poliovirus-infected cells utilizes a transcription-dependent pathway that results in the appearance of stable, compositionally unique stress granules.


2019 ◽  
Vol 2 (2) ◽  
pp. e201800257 ◽  
Author(s):  
Alexander Martin Heberle ◽  
Patricia Razquin Navas ◽  
Miriam Langelaar-Makkinje ◽  
Katharina Kasack ◽  
Ahmed Sadik ◽  
...  

All cells and organisms exhibit stress-coping mechanisms to ensure survival. Cytoplasmic protein-RNA assemblies termed stress granules are increasingly recognized to promote cellular survival under stress. Thus, they might represent tumor vulnerabilities that are currently poorly explored. The translation-inhibitory eIF2α kinases are established as main drivers of stress granule assembly. Using a systems approach, we identify the translation enhancers PI3K and MAPK/p38 as pro-stress-granule-kinases. They act through the metabolic master regulator mammalian target of rapamycin complex 1 (mTORC1) to promote stress granule assembly. When highly active, PI3K is the main driver of stress granules; however, the impact of p38 becomes apparent as PI3K activity declines. PI3K and p38 thus act in a hierarchical manner to drive mTORC1 activity and stress granule assembly. Of note, this signaling hierarchy is also present in human breast cancer tissue. Importantly, only the recognition of the PI3K-p38 hierarchy under stress enabled the discovery of p38’s role in stress granule formation. In summary, we assign a new pro-survival function to the key oncogenic kinases PI3K and p38, as they hierarchically promote stress granule formation.


2014 ◽  
Vol 121 (1) ◽  
pp. 149-159 ◽  
Author(s):  
Rajib K. Paul ◽  
Nagendra S. Singh ◽  
Mohammed Khadeer ◽  
Ruin Moaddel ◽  
Mitesh Sanghvi ◽  
...  

Abstract Background: Subanesthetic doses of (R,S)-ketamine are used in the treatment of neuropathic pain and depression. In the rat, the antidepressant effects of (R,S)-ketamine are associated with increased activity and function of mammalian target of rapamycin (mTOR); however, (R,S)-ketamine is extensively metabolized and the contribution of its metabolites to increased mTOR signaling is unknown. Methods: Rats (n = 3 per time point) were given (R,S)-ketamine, (R,S)-norketamine, and (2S,6S)-hydroxynorketamine and their effect on the mTOR pathway determined after 20, 30, and 60 min. PC-12 pheochromocytoma cells (n = 3 per experiment) were treated with escalating concentrations of each compound and the impact on the mTOR pathway was determined. Results: The phosphorylation of mTOR and its downstream targets was significantly increased in rat prefrontal cortex tissue by more than ~2.5-, ~25-, and ~2-fold, respectively, in response to a 60-min postadministration of (R,S)-ketamine, (R,S)-norketamine, and (2S,6S)-hydroxynorketamine (P < 0.05, ANOVA analysis). In PC-12 pheochromocytoma cells, the test compounds activated the mTOR pathway in a concentration-dependent manner, which resulted in a significantly higher expression of serine racemase with ~2-fold increases at 0.05 nM (2S,6S)-hydroxynorketamine, 10 nM (R,S)-norketamine, and 1,000 nM (R,S)-ketamine. The potency of the effect reflected antagonistic activity of the test compounds at the α7-nicotinic acetylcholine receptor. Conclusions: The data demonstrate that (R,S)-norketamine and (2S,6S)-hydroxynorketamine have potent pharmacological activity both in vitro and in vivo and contribute to the molecular effects produced by subanesthetic doses of (R,S)-ketamine. The results suggest that the determination of the mechanisms underlying the antidepressant and analgesic effects of (R,S)-ketamine requires a full study of the parent compound and its metabolites.


Sign in / Sign up

Export Citation Format

Share Document