023 Sleep in a Brainless Animal - The Relationship Between Centralization and Sleep in the Upside-down Jellyfish

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A11-A11
Author(s):  
Michael Abrams

Abstract Introduction Though sleep is pervasive in animals, its fundamental roles, and the processes involved in generating the behavior, remain poorly understood. A key outstanding question in sleep regulation is whether sleep is controlled strictly by a top-down mechanism via activity of specific central nervous system (CNS) neurons or is controlled partially by bottom-up signals from neural and non-neural tissue. Recently, we showed that the upside-down jellyfish Cassiopea sleeps, providing an opportunity to study sleep control, regulation, and function in an animal without a CNS. Methods Cassiopea have a decentralized nervous system (DNS) of radially spaced interconnected ganglia called rhopalia along their bell margin that control muscle contractions. The signal to contract is sent to muscle fibers local to the initiating ganglion, and the contraction propagates outwards as a point source wave. We have developed computer programs to detect the controlling ganglion, which allows us to non-invasively determine ganglia activity, and to understand how a simple network of ganglia controls behavior. We are also using immunofluorescence, in situ hybridization, qPCR, and RNAseq to characterize the effect of sleep deprivation (SD) on the jellyfish nervous system. Results We have discovered a temporally centralized form of behavioral control that changes between day and night, and during SD. A subset of ganglia share behavioral control—while some almost never initiate contractions, others are active both day and night, or are mostly day-active or night-active, and SD drastically changes ganglia usage. Regions that increase activity at night are less active the following day, perhaps evidence of homeostatic regulation. Using RNAseq we found that during SD, one nAChRα subunit increases expression ~3.8-fold and we are studying its role in arousal and sleep. Conclusion We are investigating a different kind of nervous system, one that is morphologically decentralized (a network of discrete ganglia), and yet temporally centralized (a subset of ganglia dominate activity control). Wake, sleep, and SD involve different ganglia activity patterns, different levels of centralization, and different gene expression. Thus, temporal centralization could provide a mechanism to explain how local sleep, via a bottom-up mechanism, can result in organismal sleep behavior. Support (if any) UC Berkeley Miller Postdoctoral Fellowship

Author(s):  
G. Jacobs ◽  
F. Theunissen

In order to understand how the algorithms underlying neural computation are implemented within any neural system, it is necessary to understand details of the anatomy, physiology and global organization of the neurons from which the system is constructed. Information is represented in neural systems by patterns of activity that vary in both their spatial extent and in the time domain. One of the great challenges to microscopists is to devise methods for imaging these patterns of activity and to correlate them with the underlying neuroanatomy and physiology. We have addressed this problem by using a combination of three dimensional reconstruction techniques, quantitative analysis and computer visualization techniques to build a probabilistic atlas of a neural map in an insect sensory system. The principal goal of this study was to derive a quantitative representation of the map, based on a uniform sample of afferents that was of sufficient size to allow statistically meaningful analyses of the relationships between structure and function.


2014 ◽  
Vol 155 (26) ◽  
pp. 1011-1018 ◽  
Author(s):  
György Végvári ◽  
Edina Vidéki

Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy beween organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants’ life. Orv. Hetil., 2014, 155(26), 1011–1018.


2020 ◽  
Vol 27 (34) ◽  
pp. 5790-5828 ◽  
Author(s):  
Ze Wang ◽  
Chunyang He ◽  
Jing-Shan Shi

Neurodegenerative diseases are a heterogeneous group of disorders characterized by the progressive degeneration of the structure and function of the central nervous system or peripheral nervous system. Alzheimer's Disease (AD), Parkinson's Disease (PD) and Spinal Cord Injury (SCI) are the common neurodegenerative diseases, which typically occur in people over the age of 60. With the rapid development of an aged society, over 60 million people worldwide are suffering from these uncurable diseases. Therefore, the search for new drugs and therapeutic methods has become an increasingly important research topic. Natural products especially those from the Traditional Chinese Medicines (TCMs), are the most important sources of drugs, and have received extensive interest among pharmacist. In this review, in order to facilitate further chemical modification of those useful natural products by pharmacists, we will bring together recent studies in single natural compound from TCMs with neuroprotective effect.


Author(s):  
Joseph Ayers

This chapter describes how synthetic biology and organic electronics can integrate neurobiology and robotics to form a basis for biohybrid robots and synthetic neuroethology. Biomimetic robots capture the performance advantages of animal models by mimicking the behavioral control schemes evolved in nature, based on modularized devices that capture the biomechanics and control principles of the nervous system. However, current robots are blind to chemical senses, difficult to miniaturize, and require chemical batteries. These obstacles can be overcome by integration of living engineered cells. Synthetic biology seeks to build devices and systems from fungible gene parts (gene systems coding different proteins) integrated into a chassis (induced pluripotent eukaryotic cells, yeast, or bacteria) to produce devices with properties not found in nature. Biohybrid robots are examples of such systems (interacting sets of devices). A nascent literature describes genes that can mediate organ levels of organization. Such capabilities, applied to biohybrid systems, portend truly biological robots guided, controlled, and actuated solely by life processes.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 51
Author(s):  
Ilias Kalafatakis ◽  
Maria Savvaki ◽  
Theodora Velona ◽  
Domna Karagogeos

Demyelinating pathologies comprise of a variety of conditions where either central or peripheral myelin is attacked, resulting in white matter lesions and neurodegeneration. Myelinated axons are organized into molecularly distinct domains, and this segregation is crucial for their proper function. These defined domains are differentially affected at the different stages of demyelination as well as at the lesion and perilesion sites. Among the main players in myelinated axon organization are proteins of the contactin (CNTN) group of the immunoglobulin superfamily (IgSF) of cell adhesion molecules, namely Contactin-1 and Contactin-2 (CNTN1, CNTN2). The two contactins perform their functions through intermolecular interactions, which are crucial for myelinated axon integrity and functionality. In this review, we focus on the implication of these two molecules as well as their interactors in demyelinating pathologies in humans. At first, we describe the organization and function of myelinated axons in the central (CNS) and the peripheral (PNS) nervous system, further analyzing the role of CNTN1 and CNTN2 as well as their interactors in myelination. In the last section, studies showing the correlation of the two contactins with demyelinating pathologies are reviewed, highlighting the importance of these recognition molecules in shaping the function of the nervous system in multiple ways.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2693
Author(s):  
Gabriella Schiera ◽  
Carlo Maria Di Liegro ◽  
Italia Di Liegro

The development and maturation of the mammalian brain are regulated by thyroid hormones (THs). Both hypothyroidism and hyperthyroidism cause serious anomalies in the organization and function of the nervous system. Most importantly, brain development is sensitive to TH supply well before the onset of the fetal thyroid function, and thus depends on the trans-placental transfer of maternal THs during pregnancy. Although the mechanism of action of THs mainly involves direct regulation of gene expression (genomic effects), mediated by nuclear receptors (THRs), it is now clear that THs can elicit cell responses also by binding to plasma membrane sites (non-genomic effects). Genomic and non-genomic effects of THs cooperate in modeling chromatin organization and function, thus controlling proliferation, maturation, and metabolism of the nervous system. However, the complex interplay of THs with their targets has also been suggested to impact cancer proliferation as well as metastatic processes. Herein, after discussing the general mechanisms of action of THs and their physiological effects on the nervous system, we will summarize a collection of data showing that thyroid hormone levels might influence cancer proliferation and invasion.


Sign in / Sign up

Export Citation Format

Share Document