scholarly journals Automated Design and Implementation of a NOR Gate in Pseudomonas Putida

2021 ◽  
Author(s):  
Huseyin Tas ◽  
Lewis Grozinger ◽  
Angel Goñi-Moreno ◽  
Victor de Lorenzo

ABSTRACT Boolean NOR gates have been widely implemented in Escherichia coli as transcriptional regulatory devices for building complex genetic circuits. Yet, their portability to other bacterial hosts/chassis is generally hampered by frequent changes in the parameters of the INPUT/OUTPUT response functions brought about by new genetic and biochemical contexts. Here, we have used the circuit design tool CELLO for assembling a NOR gate in the soil bacterium and metabolic engineering platform Pseudomonas putida with components tailored for E. coli. To this end, we capitalized on the functional parameters of 20 genetic inverters for each host and the resulting compatibility between NOT pairs. Moreover, we added to the gate library 3 inducible promoters that are specific to P. putida, thus expanding cross-platform assembly options. While the number of potential connectable inverters decreased drastically when moving the library from E. coli to P. putida, the CELLO software was still able to find an effective NOR gate in the new chassis. Automated generation of the corresponding DNA sequence and in vivo experimental verification accredited that some genetic modules initially optimized for E. coli can indeed be reused to deliver NOR logic in P. putida as well. Furthermore, the results highlight the value of creating host-specific collections of well-characterized regulatory inverters for quick assembly of genetic circuits to meet complex specifications.

2015 ◽  
Vol 21 (2) ◽  
pp. 247-260 ◽  
Author(s):  
David Beneš ◽  
Petr Sosík ◽  
Alfonso Rodríguez-Patón

Success in synthetic biology depends on the efficient construction of robust genetic circuitry. However, even the direct engineering of the simplest genetic elements (switches, logic gates) is a challenge and involves intense lab work. As the complexity of biological circuits grows, it becomes more complicated and less fruitful to rely on the rational design paradigm, because it demands many time-consuming trial-and-error cycles. One of the reasons is the context-dependent behavior of small assembly parts (like BioBricks), which in a complex environment often interact in an unpredictable way. Therefore, the idea of evolutionary engineering (artificial directed in vivo evolution) based on screening and selection of randomized combinatorial genetic circuit libraries became popular. In this article we build on the so-called dual selection technique. We propose a plasmid-based framework using toxin-antitoxin pairs together with the relaxase conjugative protein, enabling an efficient autonomous in vivo evolutionary selection of simple Boolean circuits in bacteria (E. coli was chosen for demonstration). Unlike previously reported protocols, both on and off selection steps can run simultaneously in various cells in the same environment without human intervention; and good circuits not only survive the selection process but are also horizontally transferred by conjugation to the neighbor cells to accelerate the convergence rate of the selection process. Our directed evolution strategy combines a new dual selection method with fluorescence-based screening to increase the robustness of the technique against mutations. As there are more orthogonal toxin-antitoxin pairs in E. coli, the approach is likely to be scalable to more complex functions. In silico experiments based on empirical data confirm the high search and selection capability of the protocol.


Author(s):  
Peter L. Freddolino ◽  
Thomas J. Goss ◽  
Haley M. Amemiya ◽  
Saeed Tavazoie

AbstractFree living bacteria adapt to environmental change by reprogramming gene expression through precise interactions of hundreds of DNA-binding proteins. A predictive understanding of bacterial physiology requires us to globally monitor all such protein-DNA interactions across a range of environmental and genetic perturbations. Here, we show that such global observations are possible using a modification of in vivo protein occupancy display technology (IPOD-HR) applied to E. coli. We observe that the E. coli protein-DNA interactome organizes into two distinct prototypic features: (1) highly dynamic condition-dependent transcription factor occupancy by dedicated transcriptional regulators, and (2) condition-invariant kilobase scale occupancy by nucleoid factors, forming silencing domains analogous to eukaryotic heterochromatin. We show that occupancy dynamics across a range of conditions can rapidly reveal the global transcriptional regulatory organization of a bacterium. Beyond discovery of previously hidden regulatory logic, we show that these observations can be utilized to computationally determine sequence-specificity models for the majority of active transcription factors. Our study demonstrates that global observations of protein occupancy combined with statistical inference can rapidly and systematically reveal the transcriptional regulatory and structural features of a bacterial genome. This capacity is particularly crucial for non-model bacteria which are not amenable to routine genetic manipulation.


2019 ◽  
Author(s):  
Belén Calles ◽  
Angel Goñi-Moreno ◽  
Víctor de Lorenzo

ABSTRACTWhile prokaryotic promoters controlled by signal-responding regulators typically display a range of input/output ratios when exposed to cognate inducers, virtually no naturally occurring cases are known to have an off state of zero transcription—as ideally needed for synthetic circuits. To overcome this problem we have modelled and implemented simple digitalizer module that completely suppresses the basal level of otherwise strong promoters in such a way that expression in the absence of induction is entirely impeded. The circuit involves the interplay of a translation-inhibitory sRNA with the translational coupling of the gene of interest to a repressor such as LacI. The digitalizer module was validated with the strong inducible promoters Pm (induced by XylS in the presence of benzoate) and PalkB (induced by AlkS/dicyclopropylketone) and shown to perform effectively both in E. coli and the soil bacterium Pseudomonas putida. The distinct expression architecture allowed cloning and conditional expression of e.g. colicin E3, one molecule of which per cell suffices to kill the host bacterium. Revertants that escaped ColE3 killing were not found in hosts devoid of insertion sequences, suggesting that mobile elements are a major source of circuit inactivation in vivo.


2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Author(s):  
Nguyễn Thỵ Đan Huyền ◽  
Lê Thanh Long ◽  
Trần Thị Thu Hà ◽  
Nguyễn Cao Cường ◽  
Nguyễn Hiền Trang
Keyword(s):  

Chủng T1 phân lập từ các mẫu ngô nếp NK66 nhiễm nấm mốc tự nhiên được sử dụng để nghiên cứu khả năng kháng nấm của dịch chiết vi khuẩn Pseudomonas putida 199B. Đặc điểm hình thái của chủng T1 đã được quan sát đại thể (màu sắc, hình dáng, kích thước khuẩn lạc) trên môi trường PDA và vi thể (hình dáng bào tử) trên kính hiển vi kết hợp so sánh với loài Aspergilus flavus đối chứng. Kết quả phân tích trình tự gen mã hóa 28S rRNA của chủng T1 cho thấy sự tương đồng trình tự cao với các trình tự tương ứng của loài Aspergilus flavus trên ngân hàng gen. Kết quả khảo sát ảnh hưởng của dịch chiết vi khuẩn P. putida lên sự phát triển của nấm A.  flavus gây bệnh trên hạt ngô sau thu hoạch và bảo quản ở điều kiện in vitro cho thấy, ở nồng độ P. putida 24% đã ức chế 74,50% sự phát triển đường kính tản nấm sau 10 ngày nuôi cấy, ức chế 79,63% sự hình thành sinh khối sợi nấm sau 7 ngày nuôi cấy. Ở điều kiện in vivo, sự nảy mầm của hạt giống ngô sau 30 ngày được tạo màng bao sinh học bằng dịch chiết vi khuẩn P. putida nồng độ 18% đạt 97,91%, tỉ lệ hạt nhiễm nấm mốc giảm còn 20% so với 72% ở mẫu đối chứng.


2020 ◽  
Vol 21 (4) ◽  
pp. 316-324
Author(s):  
Manica Negahdaripour ◽  
Navid Nezafat ◽  
Reza Heidari ◽  
Nasrollah Erfani ◽  
Nasim Hajighahramani ◽  
...  

Background: L2-based Human Papillomavirus (HPV) prophylactic vaccines, containing epitopes from HPV minor capsid proteins, are under investigation as second-generation HPV vaccines. No such vaccine has passed clinical trials yet, mainly due to the low immunogenicity of peptide vaccines; so efforts are being continued. A candidate vaccine composed of two HPV16 L2 epitopes, flagellin and a Toll-Like Receptor (TLR) 4 agonist (RS09) as adjuvants, and two universal T-helper epitopes was designed in silico in our previous researches. Methods: The designed vaccine construct was expressed in E. coli BL21 (DE3) and purified through metal affinity chromatography. Following mice vaccination, blood samples underwent ELISA and flow cytometry analyses for the detection of IgG and seven Th1 and Th2 cytokines. Results: Following immunization, Th1 (IFN-γ, IL-2) and Th2 (IL-4, IL-5, IL-10) type cytokines, as well as IgG, were induced significantly compared with the PBS group. Significant increases in IFN-γ, IL-2, and IL-5 levels were observed in the vaccinated group versus Freund’s adjuvant group. Conclusion: The obtained cytokine induction profile implied both cellular and humoral responses, with a more Th-1 favored trend. However, an analysis of specific antibodies against L2 is required to confirm humoral responses. No significant elevation in inflammatory cytokines, (IL-6 and TNF-α), suggested a lack of unwanted inflammatory side effects despite using a combination of two TLR agonists. The designed construct might be capable of inducing adaptive and innate immunity; nevertheless, comprehensive immune tests were not conducted at this stage and will be a matter of future work.


2019 ◽  
Vol 19 (3) ◽  
pp. 147-171
Author(s):  
Cia-Hin Lau ◽  
Chung Tin

Gene therapy and transgenic research have advanced quickly in recent years due to the development of CRISPR technology. The rapid development of CRISPR technology has been largely benefited by chemical engineering. Firstly, chemical or synthetic substance enables spatiotemporal and conditional control of Cas9 or dCas9 activities. It prevents the leaky expression of CRISPR components, as well as minimizes toxicity and off-target effects. Multi-input logic operations and complex genetic circuits can also be implemented via multiplexed and orthogonal regulation of target genes. Secondly, rational chemical modifications to the sgRNA enhance gene editing efficiency and specificity by improving sgRNA stability and binding affinity to on-target genomic loci, and hence reducing off-target mismatches and systemic immunogenicity. Chemically-modified Cas9 mRNA is also more active and less immunogenic than the native mRNA. Thirdly, nonviral vehicles can circumvent the challenges associated with viral packaging and production through the delivery of Cas9-sgRNA ribonucleoprotein complex or large Cas9 expression plasmids. Multi-functional nanovectors enhance genome editing in vivo by overcoming multiple physiological barriers, enabling ligand-targeted cellular uptake, and blood-brain barrier crossing. Chemical engineering can also facilitate viral-based delivery by improving vector internalization, allowing tissue-specific transgene expression, and preventing inactivation of the viral vectors in vivo. This review aims to discuss how chemical engineering has helped improve existing CRISPR applications and enable new technologies for biomedical research. The usefulness, advantages, and molecular action for each chemical engineering approach are also highlighted.


2001 ◽  
Vol 90 (1) ◽  
pp. 261-268 ◽  
Author(s):  
Leonardo C. Clavijo ◽  
Mary B. Carter ◽  
Paul J. Matheson ◽  
Mark A. Wilson ◽  
William B. Wead ◽  
...  

In vivo pulmonary arterial catheterization was used to determine the mechanism by which platelet-activating factor (PAF) produces pulmonary edema in rats. PAF induces pulmonary edema by increasing pulmonary microvascular permeability (PMP) without changing the pulmonary pressure gradient. Rats were cannulated for measurement of pulmonary arterial pressure (Ppa) and mean arterial pressure. PMP was determined by using either in vivo fluorescent videomicroscopy or the ex vivo Evans blue dye technique. WEB 2086 was administered intravenously (IV) to antagonize specific PAF effects. Three experiments were performed: 1) IV PAF, 2) topical PAF, and 3) Escherichia coli bacteremia. IV PAF induced systemic hypotension with a decrease in Ppa. PMP increased after IV PAF in a dose-related manner. Topical PAF increased PMP but decreased Ppa only at high doses. Both PMP (88 ± 5%) and Ppa (50 ± 3%) increased during E. coli bacteremia. PAF-receptor blockade prevents changes in Ppa and PMP after both topical PAF and E. coli bacteremia. PAF, which has been shown to mediate pulmonary edema in prior studies, appears to act in the lung by primarily increasing microvascular permeability. The presence of PAF might be prerequisite for pulmonary vascular constriction during gram-negative bacteremia.


Sign in / Sign up

Export Citation Format

Share Document