scholarly journals Effect of drying and warming piglets at birth on preweaning mortality

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Katherine D Vande Pol ◽  
Andres F Tolosa ◽  
Caleb M Shull ◽  
Catherine B Brown ◽  
Stephan A S Alencar ◽  
...  

Abstract Piglets are susceptible to hypothermia early after birth, which is a major predisposing factor for preweaning mortality (PWM). Drying and warming piglets at birth has been shown to reduce early postnatal temperature decline. This study evaluated the effect of drying and warming piglets at birth on PWM and weaning weight (WW) under commercial conditions. A completely randomized design was used with 802 sows/litters (10,327 piglets); sows/litters were randomly allotted at start of farrowing to one of two Intervention Treatments (applied at birth): Control (no drying or warming); Drying+Warming (dried with a cellulose-based desiccant and placed in a box under a heat lamp for 30 min). Piglets were weighed at birth and weaning; PWM was recorded. Rectal temperature was measured at 0 and 30 min after birth on all piglets in a subsample of 10% of litters. The effect of farrowing pen temperature (FPT) on WW and PWM was evaluated by comparing litters born under COOL (<25°C) to those born under WARM (≥25°C) FPT. The effect of birth weight on WW and PWM was evaluated by comparing three birth weight categories (BWC; Light: <1.0 kg, Medium: 1.0 to 1.5 kg, or Heavy: >1.5 kg). PROC GLIMMIX and MIXED of SAS were used to analyze mortality and other data, respectively. Litter was the experimental unit; piglet was a subsample of litter. The model included fixed effects of Intervention Treatment, and FPT or BWC as appropriate, the interaction, and the random effects of litter. Piglet rectal temperature at 30 min after birth was greater (P ≤ 0.05) for the Drying+Warming than the Control treatment (+2.33°C). Overall, there was no effect (P > 0.05) of Intervention Treatment on PWM or WW, and there were no Intervention Treatment by BWC interactions (P > 0.05) for these measurements. There was an Intervention Treatment by FPT interaction (P ≤ 0.05) for PWM. Drying and warming piglets reduced (P ≤ 0.05) PWM under COOL (by 2.4 percentage units) but not WARM FPT. In addition, WW were lower (P ≤ 0.05) under WARM (by 0.79 kg) than COOL FPT; however, there was no interaction (P > 0.05) with Intervention Treatment. In conclusion, this study suggests that drying and warming piglets at birth increases rectal temperature and may reduce PWM under cooler conditions, which are typically experienced in temperate climates during the majority of the year.

Author(s):  
Katherine D Vande Pol ◽  
Andres F Tolosa ◽  
Caleb M Shull ◽  
Catherine B Brown ◽  
Stephan A S Alencar ◽  
...  

Abstract Piglets experience a decline in body temperature immediately after birth, and both drying and warming piglets at birth reduces this. However, these interventions may have less effective at higher farrowing room temperatures. This study was carried out at a commercial facility to compare the effect of drying and/or warming piglets at birth on postnatal rectal temperature (RT) under relatively warm farrowing room temperatures (26.6 ± 2.09°C). Forty-five sows/litters were used in a completely randomized design to compare three Intervention Treatments (applied at birth): Control (no treatment); Warming (piglets placed in a plastic box under a heat lamp for 30 min); Drying+Warming (piglets dried with desiccant and warmed as above). Temperatures in the warming boxes over the study period averaged 37.7 ± 2.75°C. At birth, piglets were weighed; RT temperature was measured at 0, 10, 20, 30, 45, 60, 120, and 1440 min after birth. Blood samples were collected at 24 h after birth from a subsample of one piglet from each birth weight quartile within each litter to measure plasma immunocrit concentration. Data were analyzed using PROC MIXED of SAS with litter as the experimental unit; and piglet a subsample of litter. The model for analysis of piglet rectal temperature included fixed effects of treatment, measurement time (repeated measure), the interaction, and the random effect of sow. Compared to the Control, piglet RT were higher (P ≤ 0.05) for the Warming treatment between 10 and 60 min, and higher (P ≤ 0.05) for the Drying+Warming treatment between 10 and 120 min after birth. Rectal temperatures were higher (P ≤ 0.05) for the Drying+Warming than the Warming treatment between 20 and 120 min. Responses to drying and/or warming were greater for low birth weight piglets (< 1.0 kg) than heavier littermates, but were generally less than observed in previous experiments with similar treatments carried out under cooler temperatures. Piglet immunocrit values were lower (P ≤ 0.05) for the Drying+Warming treatment compared to the other treatments, which were similar (P > 0.05). Immunocrit values tended (P = 0.10) to be lower for light (< 1.0 kg) compared to heavier birth weight piglets. In conclusion, drying and warming piglets at birth was more effective for reducing piglet RT decline after birth than warming alone, though the effect was less than observed in previous studies carried out under cooler farrowing room temperatures.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 2-3
Author(s):  
Katherine Vande Pol ◽  
Andres Tolosa ◽  
Michael Ellis ◽  
Caleb M Shull ◽  
Katie Brown ◽  
...  

Abstract Piglets are susceptible to chilling early after birth, which is a major pre-disposing factor for pre-weaning mortality (PWM). This study evaluated the effect of drying and warming piglets at birth on PWM at a commercial facility. A CRD was used with 802 sows (litters), allotted at start of farrowing to 2 treatments (applied at birth): Control (no treatment); Dried+Warmed (dried with a cellulose-based desiccant and warmed in a heated box for 30 min). Piglets were weighed at birth and weaning; PWM was recorded. The effects of farrowing room temperature on PWM were evaluated by classifying litters as being born under Cool or Warm conditions (< 25° C and ≥ 25°C, respectively). Similarly, effects of birth weight on PWM were evaluated by classifying piglets into 3 Birth Weight Categories (BWC; < 1.0 kg, 1.0-1.5 kg, or > 1.5 kg). PROC GLIMMIX and MIXED of SAS were used to analyze PWM and other data, respectively. Litter was the experimental unit; piglet a subsample of litter. The model included fixed effects of treatment, and farrowing room temperature or BWC as appropriate, and the random effect of piglet within litter. Rectal temperature at 30 min after birth, measured on a sub-sample of 10% of litters, was greater (P < 0.05) for the Dried+Warmed than the Control treatment. There was no effect (P > 0.05) of drying and warming piglets on weaning weight or overall PWM. Additionally, PWM was similar across treatments within each BWC. However, the Dried+Warmed treatment reduced (P < 0.05) PWM compared to the Control under Cool but not Warm farrowing room temperatures. In conclusion, this suggests that drying and warming piglets at birth increases rectal temperature and may be an effective method to reduce piglet PWM under cooler farrowing room temperatures. This research was funded by the National Pork Board.


2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Katherine D Vande Pol ◽  
Andres F Tolosa ◽  
Caleb M Shull ◽  
Catherine B Brown ◽  
Stephan A S Alencar ◽  
...  

Abstract Piglets are born wet, and evaporation of that moisture decreases body temperature, increasing the risk of mortality. The objective of this study was to compare the effect of two commercially applicable methods for drying piglets at birth on piglet rectal temperature over 24 h after birth. The study was carried out in standard commercial farrowing facilities with 52 litters, using a completely randomized design with three Drying Treatments: Control (not dried); Desiccant (dried at birth using a cellulose-based desiccant); Paper Towel (dried at birth using paper towels). Litters were randomly allotted to treatments at the birth of the first piglet. At birth, piglets were individually identified, and the treatment was applied. Rectal temperature was measured at 0, 10, 20, 30, 45, 60, 120, and 1,440 min (24 h) after birth. Data were analyzed using a repeated measures model with PROC MIXED of SAS, with litter as the experimental unit and piglet a subsample of the litter. The model included the fixed effects of treatment and time (as a repeated measure), and the interaction. There was no effect (P > 0.05) of treatment on temperature at birth, or 10 or 1,440 min after birth. Piglet temperatures between 20 and 120 min after birth were similar (P > 0.05) for the Desiccant and Paper Towel treatments, but were greater (P ≤ 0.05) than the Control. The effect of birth weight on the response to Drying Treatment was evaluated by dividing the data into Light (<1.0 kg), Medium (1.0 to 1.5 kg), or Heavy (>1.5 kg) piglet Birth Weight Categories. Piglet rectal temperature data at each measurement time were analyzed using a model that included the fixed effects of Birth Weight Category, Drying Treatment, and the interaction. Temperatures of Light piglets were lower (P ≤ 0.05) than those of Heavy piglets between 20 and 120 min after birth, with Medium piglets being intermediate and generally different to the other two weight categories at these times. The difference in temperature between Light as compared with Medium or Heavy piglets was greater for the Control than the other two Drying Treatments at 60 min after birth. These results suggest that drying piglets at birth is an effective method to reduce rectal temperature decline in the early postnatal period, especially for low birth weight piglets.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 156-156
Author(s):  
Alicia Olivo Espinal ◽  
Naomi C Willard ◽  
Katherine D Vande Pol ◽  
Nicole K Moest ◽  
Michael Ellis

Abstract All piglets experience hypothermia immediately after birth, which can be a predisposing factor for pre-weaning mortality. Drying piglets at birth with a desiccant reduces the extent and duration of postnatal temperature decline. This study compared the effectiveness of different types of commercially-available desiccant products using a CRD with four treatments (applied at birth): Control (piglets not dried) and 3 Desiccant Product treatments [dried with a Mineral-based, Cellulose-based, or Mixed (mineral and cellulose-based) desiccant]. Sows (40) and litters (546 piglets) were randomly allotted to a treatment at the birth of the first piglet. Sows were housed in individual farrowing crates within pens; a heat lamp was suspended over one side of each pen. Room temperature was set at 22.8°C throughout farrowing. Piglets were weighed at birth, those on the Desiccant Product treatments were coated with desiccant until completely dry, and then returned to the pen. Piglet rectal temperatures were measured at 0, 15, 30, 45, 60 and 120 min after birth. Data were analyzed using PROC MIXED of SAS (SAS Inst. Inc., Cary, NC). The model included the fixed effects of treatment, measurement time (repeated measure), and the interaction. There was no effect (P > 0.05) of treatment on rectal temperatures at birth. At all other measurement times, piglets on the Control treatment had lower (P < 0.05) rectal temperatures than those on the 3 Desiccant Product treatments, which had similar (P > 0.05) rectal temperatures. These results suggest that the 3 commercial desiccant products evaluated were equally effective at minimizing the extent and duration of piglet rectal temperature decline in the early postnatal period.


Author(s):  
Katherine D Vande Pol ◽  
Andres F Tolosa ◽  
Raphael O Bautista ◽  
Naomi C Willard ◽  
Richard S Gates ◽  
...  

Abstract Neonatal piglets can experience both a decrease in body temperature and hypoxia, increasing risks for pre-weaning mortality. This research evaluated the effects of drying and providing supplemental oxygen to newborn piglets on rectal temperature (RT) over the first 24 h after birth. The study used a CRD with 3 Intervention Treatments (IT; applied at birth): Control (no intervention), Drying (dried using a desiccant), Oxygen [dried using a desiccant and placed in a chamber (at 40% oxygen concentration) for 20 min]. A total of 42 litters (485 piglets) were randomly allotted to treatments at the start of farrowing. At birth, each piglet was given a numbered ear tag, weighed, and the treatment was applied; RT was measured at 0, 20, 30, 45, 60, 120, and 1440 min after birth. Blood was collected from one piglet from each birth weight quartile within each litter at 24 h after birth to measure plasma immunocrit concentration. There was no effect (P > 0.05) of IT on piglet RT at 0 or 1440 min after birth. Between 20 and 60 min after birth, piglet RT was lower (P ≤ 0.05) for the Control than the Drying treatment, with the Oxygen treatment being intermediate and different (P ≤ 0.05) from the other two IT. The effect of piglet birth weight on responses to IT were evaluated by classifying piglets into Birth Weight Categories (BWC): Light (< 1.0 kg), Medium (1.0 to 1.5 kg), or Heavy (> 1.5 kg). There were IT by BWC interactions (P ≤ 0.05) for piglet RT at all measurement times between 20 and 120 min after birth. Relative to the Control, the effects of the Drying and Oxygen treatments on RT were greater (P ≤ 0.05) for Light than heavier piglets. Plasma immunocrit concentrations tended (P = 0.07) to be greater for piglets on the Control treatment compared to the other two IT and were lower (P ≤ 0.05) for Light than Heavy piglets, with Medium piglets being intermediate and different (P ≤ 0.05) to the other BWC. In conclusion, drying piglets at birth reduced the extent and duration of RT decline in piglets in the early postnatal period compared to undried piglets, especially for those of low birth weight. However, the combination of drying and placing piglets in an oxygen-rich environment provided no additional benefit over drying alone.


2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Katherine D Vande Pol ◽  
Andres F Tolosa ◽  
Caleb M Shull ◽  
Catherine B Brown ◽  
Stephan A S Alencar ◽  
...  

Abstract Piglets experience a rapid decrease in body temperature immediately after birth, increasing the risk of mortality. The objective of this study was to determine the effect of drying and/or warming piglets at birth on rectal temperature over the first 24 h after birth. The study was carried out at a commercial sow facility using a completely randomized design with four treatments (applied to piglets at birth): Control (no drying or warming), Desiccant (dried using a desiccant), Warming Box (placed in a box under a heat lamp for 30 min), and Desiccant + Warming Box (both dried and warmed as above). Farrowing pens had one heat lamp, temperatures under which were similar to the warming box (35 °C). A total of 68 litters (866 piglets) were randomly allotted to a treatment at the birth of the first piglet. At birth, each piglet was identified with a numbered ear tag and weighed; rectal temperature was measured at 0, 10, 20, 30, 45, 60, 120, and 1,440 min after birth. Data were analyzed using a repeated-measures model using PROC MIXED of SAS. Litter was the experimental unit, piglet was a subsample of the litter; and the model included the fixed effects of treatment, time (the repeated measure), and the interaction. Rectal temperatures at birth and 1,440 min after birth were similar (P > 0.05) for all treatments. At all times between 10 and 120 min after birth, Control piglets had lower (P ≤ 0.05) temperatures than the other three treatments. The Desiccant and Warming Box treatments had similar (P > 0.05) temperatures at most measurement times, but the Desiccant + Warming Box treatment had the highest (P ≤ 0.05) rectal temperatures at most times between 10 and 60 min. In addition, for all treatments, light (<1.0 kg) birth weight piglets had lower (P ≤ 0.05) temperatures than medium (1.0–1.5 kg) or heavy (>1.5 kg) piglets at all times between 10 and 120 min. In addition, at these measurement times, the deviation in temperature between the Control and the other three treatments was greater for light than medium or heavy piglets. In conclusion, both drying and warming piglets at birth significantly increased rectal temperatures between 10 and 120 min after birth, with the combination of the two interventions having the greatest effect, especially for low birth weight piglets.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 238-238
Author(s):  
Olivia Harrison ◽  
Samantha Tauer ◽  
Brent Frederick

Abstract Number of pigs born alive has been a key factor of the increasing efficiency of the U.S. swine industry. However, with increased pigs in the uterus, birth weight has been negatively impacted, with more small or at-risk pigs being born per litter. In order to overcome these changes, a study testing three commercial oral drenches against a control to determine which would increase average daily gain and decrease preweaning mortality. In a completely randomized design, 877 one-day-old suckling pigs from a high-health farm were selected for the experiment if they appeared to be in the bottom 20% of bodyweight compared to their contemporaries. Selected pigs were given one of four drenching treatments: 1) none (control), 2) bioactive proteins (BP), 3) high energy sugars (HES), and 4) immunoglobulins (IgY). Pigs were weighed on d 1 and d 19 of age (weaning), with mortality tracked during the suckling period. Data were analyzed using SAS v 9.4 (Cary, NC), with pig as the experimental unit and an accepted alpha of 0.05. Treatment had no detected effect on birth weight, weaning weight, ADG, or mortality (P = 0.79, 0.96, 0.86, 0.38 respectively). Likewise, statistical contrasts were used to determine there was no detected impact (P > 0.10) of drench, regardless of type, compared to the control in any measured response criteria. Interesting, pigs drenched with BP or IgY had numerically lower preweaning mortality (11.2 and 11.5% respectively), than those administered the control or HES (15.4 and 15.2%, respectively). In conclusion, this experiment showed no significant difference in the performance between piglets given no product vs. those drenched with bioactive proteins, high energy sugars, or immunoglobulins. However, additional research is warranted with greater replication or disease stressors to better understand if oral drenches may improve preweaning performance or mortality in different situations.


2021 ◽  
Vol 19 (1) ◽  
pp. 155-163
Author(s):  
S Sapkota ◽  
D Kc ◽  
H Giri ◽  
M Saud ◽  
M Basnet ◽  
...  

The present research was conducted on two factor Completely Randomized Design (CRD) with eight treatments and three replications. A set of experiments were carried out to evaluate the effect of postharvest ethephon treatment and packaging on ripening of mango cv. Maldah. The treatments consisted of ripening agent i.e., ethephon and control treatment under different packaging condition i.e., fiber with hole, fiber without hole, plastic with hole and plastic without hole. The result revealed that different packaging condition and ripening agents influenced the ripening behavior of mango. The highest TSS (15.26), sugar-acid ratio (23.66) and juice content (126.05) were recorded with fiber (without hole) and the lowest TSS (12.60), sugar-acid ratio (9.01) and juice content (116.05) with plastic (without hole). The highest TA (1.44) was recorded with plastic (without hole) and the lowest (0.66) with fiber (without hole). Similarly, the highest BT (2.83) was recorded with fiber (with hole) and the lowest (1.66) with plastic (without hole). Firmness, sweetness, TSS and juice content were the highest with the interaction effect of fiber bag (without hole) and ethephon treatment. In conclusion, mango fruits with ethephon treatment packed in fiber bag (without hole) enhances quality and ripening of mango whereas under controlled condition and without hole plastic packaging mangoes had low quality performance in terms of physio-chemical properties. SAARC J. Agric., 19(1): 155-163 (2021)


2013 ◽  
Vol 14 (2) ◽  
pp. 308-321
Author(s):  
Lina Maria Peñuela Sierra ◽  
Ivan Moreira ◽  
Antonio Claudio Furlan ◽  
Paulo Levi de Oliveira Carvalho ◽  
Ângela Rocio Poveda Parra ◽  
...  

Two experiments were carried out to determine the bioavailability of phosphorus in two spray-dried yeasts - sugarcane yeast (SCY), and sugarcane yeast + brewer's yeast (SCBY) - in starting pigs, by comparing different methods (Apparent Digestibility Coefficient of Phosphorus - ADCP; True Digestibility Coefficient of Phosphorus - TDCP; slope ratio; and standard curve). In experiment I, a digestibility assay were carried out using 30 cross breed pig with initial weigh of 22.69 ± 4.24kg, allotted in a completely randomized design. The mean ADCP and TDCP values were 62.68 and 64.15% for SCY and 77.01 and 79.33% for SCBY. ADCP and TDCP for SCBY were higher (P<0.05) than the values for SCY. In Experiment II, a growth test was conducted, 56 crossbred piglets, were utilized, with initial live weight of 15.11 ± 3.43kg, allotted in a completely randomized design, with seven treatments, four replications, and two pigs per experimental unit. The treatments consisted of a basal diet without supplementation with P and the same diet including supplementation with two levels of P (0.053% and 0.105%) from dicalcium phosphate, SCY and SCBY. The relative bioavailability mean value of 57.23% for SCY and 91.96% for SCBY, corresponding to 0.30% and 0.40% of available phosphorus, respectively.


Author(s):  
Andressa C. Neves ◽  
Camila N. Bergamini ◽  
Rafaela de O. Leonardo ◽  
Manoel P. Gonçalves ◽  
Dilcemara C. Zenatti ◽  
...  

ABSTRACT This study aimed to evaluate the effect of applying increasing doses of biofertilizer obtained by the anaerobic digestion of cassava effluent on the development of crambe plants. The experiment was conducted in a protected environment at the Federal University of Paraná (UFPR), Palotina Sector, between April and August 2015. A completely randomized design was used, and five different treatments with the following doses were applied in five replicates: 0, 40, 80, 120, and 160 kg ha-1 of K2O. The following parameters related to plant development were evaluated: final height, stem diameter, number of branches, dry shoot and root biomass, mass of the grains, and oil content. The 160 kg K2O ha-1 dose was found to have the best influence on the plant development, because all the measured parameters reached their highest values at this dose, except for oil content, which attained the highest percentage in the case of the control treatment (0 kg ha-1 of K2O). This study proved that the biofertilizer obtained by anaerobic digestion of cassava effluent can be used as an alternative to regular fertilizers in cultivating crambe.


Sign in / Sign up

Export Citation Format

Share Document