scholarly journals Effect of drying and/or warming piglets at birth under warm farrowing room temperatures on piglet rectal temperature over the first 24 h after birth

Author(s):  
Katherine D Vande Pol ◽  
Andres F Tolosa ◽  
Caleb M Shull ◽  
Catherine B Brown ◽  
Stephan A S Alencar ◽  
...  

Abstract Piglets experience a decline in body temperature immediately after birth, and both drying and warming piglets at birth reduces this. However, these interventions may have less effective at higher farrowing room temperatures. This study was carried out at a commercial facility to compare the effect of drying and/or warming piglets at birth on postnatal rectal temperature (RT) under relatively warm farrowing room temperatures (26.6 ± 2.09°C). Forty-five sows/litters were used in a completely randomized design to compare three Intervention Treatments (applied at birth): Control (no treatment); Warming (piglets placed in a plastic box under a heat lamp for 30 min); Drying+Warming (piglets dried with desiccant and warmed as above). Temperatures in the warming boxes over the study period averaged 37.7 ± 2.75°C. At birth, piglets were weighed; RT temperature was measured at 0, 10, 20, 30, 45, 60, 120, and 1440 min after birth. Blood samples were collected at 24 h after birth from a subsample of one piglet from each birth weight quartile within each litter to measure plasma immunocrit concentration. Data were analyzed using PROC MIXED of SAS with litter as the experimental unit; and piglet a subsample of litter. The model for analysis of piglet rectal temperature included fixed effects of treatment, measurement time (repeated measure), the interaction, and the random effect of sow. Compared to the Control, piglet RT were higher (P ≤ 0.05) for the Warming treatment between 10 and 60 min, and higher (P ≤ 0.05) for the Drying+Warming treatment between 10 and 120 min after birth. Rectal temperatures were higher (P ≤ 0.05) for the Drying+Warming than the Warming treatment between 20 and 120 min. Responses to drying and/or warming were greater for low birth weight piglets (< 1.0 kg) than heavier littermates, but were generally less than observed in previous experiments with similar treatments carried out under cooler temperatures. Piglet immunocrit values were lower (P ≤ 0.05) for the Drying+Warming treatment compared to the other treatments, which were similar (P > 0.05). Immunocrit values tended (P = 0.10) to be lower for light (< 1.0 kg) compared to heavier birth weight piglets. In conclusion, drying and warming piglets at birth was more effective for reducing piglet RT decline after birth than warming alone, though the effect was less than observed in previous studies carried out under cooler farrowing room temperatures.

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Katherine D Vande Pol ◽  
Andres F Tolosa ◽  
Caleb M Shull ◽  
Catherine B Brown ◽  
Stephan A S Alencar ◽  
...  

Abstract Piglets are susceptible to hypothermia early after birth, which is a major predisposing factor for preweaning mortality (PWM). Drying and warming piglets at birth has been shown to reduce early postnatal temperature decline. This study evaluated the effect of drying and warming piglets at birth on PWM and weaning weight (WW) under commercial conditions. A completely randomized design was used with 802 sows/litters (10,327 piglets); sows/litters were randomly allotted at start of farrowing to one of two Intervention Treatments (applied at birth): Control (no drying or warming); Drying+Warming (dried with a cellulose-based desiccant and placed in a box under a heat lamp for 30 min). Piglets were weighed at birth and weaning; PWM was recorded. Rectal temperature was measured at 0 and 30 min after birth on all piglets in a subsample of 10% of litters. The effect of farrowing pen temperature (FPT) on WW and PWM was evaluated by comparing litters born under COOL (<25°C) to those born under WARM (≥25°C) FPT. The effect of birth weight on WW and PWM was evaluated by comparing three birth weight categories (BWC; Light: <1.0 kg, Medium: 1.0 to 1.5 kg, or Heavy: >1.5 kg). PROC GLIMMIX and MIXED of SAS were used to analyze mortality and other data, respectively. Litter was the experimental unit; piglet was a subsample of litter. The model included fixed effects of Intervention Treatment, and FPT or BWC as appropriate, the interaction, and the random effects of litter. Piglet rectal temperature at 30 min after birth was greater (P ≤ 0.05) for the Drying+Warming than the Control treatment (+2.33°C). Overall, there was no effect (P > 0.05) of Intervention Treatment on PWM or WW, and there were no Intervention Treatment by BWC interactions (P > 0.05) for these measurements. There was an Intervention Treatment by FPT interaction (P ≤ 0.05) for PWM. Drying and warming piglets reduced (P ≤ 0.05) PWM under COOL (by 2.4 percentage units) but not WARM FPT. In addition, WW were lower (P ≤ 0.05) under WARM (by 0.79 kg) than COOL FPT; however, there was no interaction (P > 0.05) with Intervention Treatment. In conclusion, this study suggests that drying and warming piglets at birth increases rectal temperature and may reduce PWM under cooler conditions, which are typically experienced in temperate climates during the majority of the year.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 2-3
Author(s):  
Katherine Vande Pol ◽  
Andres Tolosa ◽  
Michael Ellis ◽  
Caleb M Shull ◽  
Katie Brown ◽  
...  

Abstract Piglets are susceptible to chilling early after birth, which is a major pre-disposing factor for pre-weaning mortality (PWM). This study evaluated the effect of drying and warming piglets at birth on PWM at a commercial facility. A CRD was used with 802 sows (litters), allotted at start of farrowing to 2 treatments (applied at birth): Control (no treatment); Dried+Warmed (dried with a cellulose-based desiccant and warmed in a heated box for 30 min). Piglets were weighed at birth and weaning; PWM was recorded. The effects of farrowing room temperature on PWM were evaluated by classifying litters as being born under Cool or Warm conditions (< 25° C and ≥ 25°C, respectively). Similarly, effects of birth weight on PWM were evaluated by classifying piglets into 3 Birth Weight Categories (BWC; < 1.0 kg, 1.0-1.5 kg, or > 1.5 kg). PROC GLIMMIX and MIXED of SAS were used to analyze PWM and other data, respectively. Litter was the experimental unit; piglet a subsample of litter. The model included fixed effects of treatment, and farrowing room temperature or BWC as appropriate, and the random effect of piglet within litter. Rectal temperature at 30 min after birth, measured on a sub-sample of 10% of litters, was greater (P < 0.05) for the Dried+Warmed than the Control treatment. There was no effect (P > 0.05) of drying and warming piglets on weaning weight or overall PWM. Additionally, PWM was similar across treatments within each BWC. However, the Dried+Warmed treatment reduced (P < 0.05) PWM compared to the Control under Cool but not Warm farrowing room temperatures. In conclusion, this suggests that drying and warming piglets at birth increases rectal temperature and may be an effective method to reduce piglet PWM under cooler farrowing room temperatures. This research was funded by the National Pork Board.


2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Katherine D Vande Pol ◽  
Andres F Tolosa ◽  
Caleb M Shull ◽  
Catherine B Brown ◽  
Stephan A S Alencar ◽  
...  

Abstract Piglets experience a rapid decrease in body temperature immediately after birth, increasing the risk of mortality. The objective of this study was to determine the effect of drying and/or warming piglets at birth on rectal temperature over the first 24 h after birth. The study was carried out at a commercial sow facility using a completely randomized design with four treatments (applied to piglets at birth): Control (no drying or warming), Desiccant (dried using a desiccant), Warming Box (placed in a box under a heat lamp for 30 min), and Desiccant + Warming Box (both dried and warmed as above). Farrowing pens had one heat lamp, temperatures under which were similar to the warming box (35 °C). A total of 68 litters (866 piglets) were randomly allotted to a treatment at the birth of the first piglet. At birth, each piglet was identified with a numbered ear tag and weighed; rectal temperature was measured at 0, 10, 20, 30, 45, 60, 120, and 1,440 min after birth. Data were analyzed using a repeated-measures model using PROC MIXED of SAS. Litter was the experimental unit, piglet was a subsample of the litter; and the model included the fixed effects of treatment, time (the repeated measure), and the interaction. Rectal temperatures at birth and 1,440 min after birth were similar (P > 0.05) for all treatments. At all times between 10 and 120 min after birth, Control piglets had lower (P ≤ 0.05) temperatures than the other three treatments. The Desiccant and Warming Box treatments had similar (P > 0.05) temperatures at most measurement times, but the Desiccant + Warming Box treatment had the highest (P ≤ 0.05) rectal temperatures at most times between 10 and 60 min. In addition, for all treatments, light (<1.0 kg) birth weight piglets had lower (P ≤ 0.05) temperatures than medium (1.0–1.5 kg) or heavy (>1.5 kg) piglets at all times between 10 and 120 min. In addition, at these measurement times, the deviation in temperature between the Control and the other three treatments was greater for light than medium or heavy piglets. In conclusion, both drying and warming piglets at birth significantly increased rectal temperatures between 10 and 120 min after birth, with the combination of the two interventions having the greatest effect, especially for low birth weight piglets.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 4-4 ◽  
Author(s):  
Naomi Cooper ◽  
Katherine D Vande Pol ◽  
Michael Ellis ◽  
Yijie Xiong ◽  
Richard Gates

Abstract The objective of this study was to evaluate the effects of piglet birth weight and drying piglets at birth on post-natal rectal temperatures using a CRD with 2 treatments: 1) Drying (not dried vs. dried at birth with a desiccant); 2) Birth weight [4 within-litter birth weight quartiles (Q1: 1.13 ± 0.33 kg, Q2: 1.43 ± 0.28 kg, Q3: 1.62 ± 0.28 kg, Q4: 1.81 ± 0.28 kg)]. Sows (26) and litters (281 piglets) were randomly allotted to drying treatment and were housed in farrowing crates with a heat lamp; room temperature was set at 22.8°C. Piglets were weighed at birth and rectal temperature measured at 0, 15, 30, 45, 60, 90, 120, 180, 240, and 1440 min after birth. Data were analyzed using PROC MIXED of SAS (SAS Inst. Inc., Cary, NC); the model included fixed effects of litter birth weight quartile and drying treatment and interaction, and time (repeated measure), and random effect of sow. Mean piglet birth weight and rectal temperature at birth were 1.49 ± 0.39 kg and 39.2 ± 0.43°C, respectively. There were no drying by birth weight treatment interactions. Temperatures were similar (P > 0.05) for the drying and birth weight treatments at birth and 240 and 1440 min (Table 1). Drying increased (P < 0.05) rectal temperature from 15 to 180 min; the greatest difference was at 45 min (2.4°C). Temperatures were similar (P > 0.05) for Q2, 3, and 4 from 15 to 180 min. Quartile 1 had a lower (P < 0.05) temperature than the 3 heavier quartiles from 15 to 180 min, except at 120 min when temperatures were similar for Q1 and 2. The lightest piglets exhibited the greatest post-natal temperature decline and drying of piglets at birth reduced the post-natal temperature decline in piglets of all weights.


2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Katherine D Vande Pol ◽  
Andres F Tolosa ◽  
Caleb M Shull ◽  
Catherine B Brown ◽  
Stephan A S Alencar ◽  
...  

Abstract Piglets are born wet, and evaporation of that moisture decreases body temperature, increasing the risk of mortality. The objective of this study was to compare the effect of two commercially applicable methods for drying piglets at birth on piglet rectal temperature over 24 h after birth. The study was carried out in standard commercial farrowing facilities with 52 litters, using a completely randomized design with three Drying Treatments: Control (not dried); Desiccant (dried at birth using a cellulose-based desiccant); Paper Towel (dried at birth using paper towels). Litters were randomly allotted to treatments at the birth of the first piglet. At birth, piglets were individually identified, and the treatment was applied. Rectal temperature was measured at 0, 10, 20, 30, 45, 60, 120, and 1,440 min (24 h) after birth. Data were analyzed using a repeated measures model with PROC MIXED of SAS, with litter as the experimental unit and piglet a subsample of the litter. The model included the fixed effects of treatment and time (as a repeated measure), and the interaction. There was no effect (P > 0.05) of treatment on temperature at birth, or 10 or 1,440 min after birth. Piglet temperatures between 20 and 120 min after birth were similar (P > 0.05) for the Desiccant and Paper Towel treatments, but were greater (P ≤ 0.05) than the Control. The effect of birth weight on the response to Drying Treatment was evaluated by dividing the data into Light (<1.0 kg), Medium (1.0 to 1.5 kg), or Heavy (>1.5 kg) piglet Birth Weight Categories. Piglet rectal temperature data at each measurement time were analyzed using a model that included the fixed effects of Birth Weight Category, Drying Treatment, and the interaction. Temperatures of Light piglets were lower (P ≤ 0.05) than those of Heavy piglets between 20 and 120 min after birth, with Medium piglets being intermediate and generally different to the other two weight categories at these times. The difference in temperature between Light as compared with Medium or Heavy piglets was greater for the Control than the other two Drying Treatments at 60 min after birth. These results suggest that drying piglets at birth is an effective method to reduce rectal temperature decline in the early postnatal period, especially for low birth weight piglets.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 156-156
Author(s):  
Alicia Olivo Espinal ◽  
Naomi C Willard ◽  
Katherine D Vande Pol ◽  
Nicole K Moest ◽  
Michael Ellis

Abstract All piglets experience hypothermia immediately after birth, which can be a predisposing factor for pre-weaning mortality. Drying piglets at birth with a desiccant reduces the extent and duration of postnatal temperature decline. This study compared the effectiveness of different types of commercially-available desiccant products using a CRD with four treatments (applied at birth): Control (piglets not dried) and 3 Desiccant Product treatments [dried with a Mineral-based, Cellulose-based, or Mixed (mineral and cellulose-based) desiccant]. Sows (40) and litters (546 piglets) were randomly allotted to a treatment at the birth of the first piglet. Sows were housed in individual farrowing crates within pens; a heat lamp was suspended over one side of each pen. Room temperature was set at 22.8°C throughout farrowing. Piglets were weighed at birth, those on the Desiccant Product treatments were coated with desiccant until completely dry, and then returned to the pen. Piglet rectal temperatures were measured at 0, 15, 30, 45, 60 and 120 min after birth. Data were analyzed using PROC MIXED of SAS (SAS Inst. Inc., Cary, NC). The model included the fixed effects of treatment, measurement time (repeated measure), and the interaction. There was no effect (P > 0.05) of treatment on rectal temperatures at birth. At all other measurement times, piglets on the Control treatment had lower (P < 0.05) rectal temperatures than those on the 3 Desiccant Product treatments, which had similar (P > 0.05) rectal temperatures. These results suggest that the 3 commercial desiccant products evaluated were equally effective at minimizing the extent and duration of piglet rectal temperature decline in the early postnatal period.


2021 ◽  
Vol 99 (Supplement_2) ◽  
pp. 22-22
Author(s):  
Charles A Zumbaugh ◽  
Susannah A Gonia ◽  
Kathryn M Payne ◽  
Thomas B Wilson

Abstract The objectives of this experiment were to determine changes in the nutritive value and ergot alkaloid concentrations of endophyte-infected tall fescue hay and haylage during a 180-d storage period. Forage from a single field of Kentucky-31 tall fescue was cut for hay in late June and allowed to dry in the field. The dry matter (DM) of the windrow of cut forage was measured every 2 h after clipping. Forage was sampled from the windrow in 6 location blocks once forage DM reached target levels for haylage and hay treatments. Haylage and hay samples were taken when the DM of the windrow reached 50% and 80%, respectively. Seven subsamples of each treatment within block were chopped to 1.91 cm in length with a lettuce chopper and vacuum sealed in oxygen-excluding bags. Sample bags were stored indoors and opened at 30 d intervals over the 180-d storage period. Samples were analyzed for pH, nutritive value, and individual ergot alkaloid concentrations using high-performance liquid chromatography. Within each storage day, treatment within block was considered the experimental unit. Data were analyzed in SAS using the MIXED procedure with fixed effects of treatment, day, and the treatment by day interaction. Location block was considered a random effect. As expected, pH was decreased for haylage compared to hay at all time points (P < 0.01) and DM was greater (P < 0.01) for hay compared to haylage. Neutral detergent fiber values were greater (P < 0.01) for hay compared to haylage and declined during storage (P < 0.01). Total ergot alkaloid concentrations did not differ by treatment (P = 0.61), but ergovaline concentrations declined (P < 0.01) during storage. Collectively, these results indicate minimal differences in nutritive value and ergot alkaloid concentrations between hay and haylage during storage, and that ergovaline concentrations decline during storage.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 238-238
Author(s):  
Olivia Harrison ◽  
Samantha Tauer ◽  
Brent Frederick

Abstract Number of pigs born alive has been a key factor of the increasing efficiency of the U.S. swine industry. However, with increased pigs in the uterus, birth weight has been negatively impacted, with more small or at-risk pigs being born per litter. In order to overcome these changes, a study testing three commercial oral drenches against a control to determine which would increase average daily gain and decrease preweaning mortality. In a completely randomized design, 877 one-day-old suckling pigs from a high-health farm were selected for the experiment if they appeared to be in the bottom 20% of bodyweight compared to their contemporaries. Selected pigs were given one of four drenching treatments: 1) none (control), 2) bioactive proteins (BP), 3) high energy sugars (HES), and 4) immunoglobulins (IgY). Pigs were weighed on d 1 and d 19 of age (weaning), with mortality tracked during the suckling period. Data were analyzed using SAS v 9.4 (Cary, NC), with pig as the experimental unit and an accepted alpha of 0.05. Treatment had no detected effect on birth weight, weaning weight, ADG, or mortality (P = 0.79, 0.96, 0.86, 0.38 respectively). Likewise, statistical contrasts were used to determine there was no detected impact (P > 0.10) of drench, regardless of type, compared to the control in any measured response criteria. Interesting, pigs drenched with BP or IgY had numerically lower preweaning mortality (11.2 and 11.5% respectively), than those administered the control or HES (15.4 and 15.2%, respectively). In conclusion, this experiment showed no significant difference in the performance between piglets given no product vs. those drenched with bioactive proteins, high energy sugars, or immunoglobulins. However, additional research is warranted with greater replication or disease stressors to better understand if oral drenches may improve preweaning performance or mortality in different situations.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 137-138
Author(s):  
Calvin Gibbons ◽  
Andrea K Watson ◽  
Galen E Erickson ◽  
Bradley M Boyd ◽  
Levi J McPhillips ◽  
...  

Abstract Algae oil production for Omega-3 fatty acid supplementation yields a byproduct called Condensed Algal Residue Solubles (CARS; 25.4% DM, 19.3% CP, 8.3% Fat, 9.96% Na on DM basis), de-oiled algae cells with residual fermentation substrates. This study evaluated the use of CARS in feedlot finishing diets. Crossbreed steers, (n=480) were blocked and stratified by initial body weight (BW) into 4 blocks, and assigned randomly to treatments. Treatments were designed as a 2 x 3 factorial with 3 inclusions of CARS (0, 2.5, 5% of diet DM) and 2 different base diets representing Northern and Southern Great Plains diets. The Southern diets contained steam flaked corn and dry distillers grains while the Northern diets had dry rolled and high moisture corn with wet distillers grains. CARS replaced corn in both diets. All blocks were harvested after 148 days on feed. Performance data were analyzed as a randomized block design with CARS inclusion, base diet, and interactions as fixed effects, BW block as a random effect and pen (n=48) as the experimental unit. Orthogonal contrasts were used to test linear and quadratic effects of CARS inclusion. There were no significant interactions between CARS inclusion and diet type (P ≥ 0.49). Main effects of CARS indicated positive quadratic responses for carcass adjusted ADG, G:F, 12th rib back fat, yield grade (P < 0.01; increasing to 2.5% inclusion, decreasing at 5%) and hot carcass weight was both linear and quadratic (P ≤ 0.01 and P ≥ 0.06 respectively; 969, 977, 935 as CARS increased). Linear decrease in DMI, final adjusted BW and ribeye area (P ≤ 0.01) as CARS increased. Cattle fed the Southern diets had greater ADG and G:F compared to Northern diets (P < 0.01). Including 2.5% CARS in the diet improved feed efficiency in both Northern and Southern based feedlot diets.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 154-155
Author(s):  
Katherine Vande Pol ◽  
Naomi Cooper ◽  
Andres Tolosa ◽  
Michael Ellis ◽  
Richard Gates ◽  
...  

Abstract Piglets often experience hypothermia early after birth. Previous research has suggested that drying piglets and administration of oxygen (a potential treatment for asphyxiation) at birth may increase post-natal rectal temperatures. The objective of this study was to determine the effects of drying and administering oxygen at birth on piglet rectal temperature over the first 24 h after birth. The study, conducted at a commercial facility, used a CRD with 42 sows/litters randomly allotted at start of farrowing to 3 treatments (applied at birth): Control (no drying or oxygenation); Dried (using a cellulose-based desiccant); Dried+Oxygen [dried and placed in a chamber (40% oxygen) for 20 min]. At birth, piglets were weighed and uniquely identified. Rectal temperature was measured at 0, 20, 30, 45, 60, 120, and 1440 min after birth. Data were analyzed using PROC MIXED of SAS. Litter was the experimental unit; piglet was a subsample of litter. The statistical model included effects of treatment, time of measurement, and the interaction. Both the Dried and Dried+Oxygen treatments had greater (P < 0.05) rectal temperatures than the Control between 20 and 120 min. However, the Dried+Oxygen treatment had lower (P < 0.05) rectal temperatures than the Dried treatment between 20 and 60 minutes. Temperatures at 1440 min were lower (P < 0.05) for the Dried+Oxygen than the other treatments; however, differences were small. In conclusion, drying piglets at birth increased rectal temperatures over the first 2 h after birth. The combination of drying piglets at birth and placement in an oxygen chamber for 20 min was less effective at moderating post-natal temperature changes than drying alone. Further research on piglet oxygenation is necessary to understand the reason for these reduced temperatures, and whether this treatment affects pre-weaning mortality. This research was funded by the National Pork Board.


Sign in / Sign up

Export Citation Format

Share Document