scholarly journals Use of low dosage amino acid blends to prevent stress-related piglet diarrhea

Author(s):  
Anna G Wessels ◽  
Tristan Chalvon-Demersey ◽  
Jürgen Zentek

Abstract Weaning is a challenging period for piglets associated with reduced feed intake, impairment of gut integrity, and diarrhea. Previous studies demonstrate that supplementation with single functional amino acids promote piglets’ performance due to the improvement of intestinal health. Thus, we hypothesized that a combination of functional amino acids provided beyond the postulated requirement for growth could facilitate the weaning transition. Ninety piglets, initially stressed after weaning by 100 min overland transport, received a control diet or the same diet supplemented with a low-dosed (0.3 %) mixture of amino acids (AAB-1: L-arginine, L-leucine, L-valine, L-isoleucine, L-cystine; AAB-2: L-arginine, L-leucine, L-valine, L-isoleucine, L-cystine, L-tryptophan) for 28 days. Fecal consistency was ranked daily, growth performance was assessed weekly. On day 1 and 14 of the trial, blood samples were collected from a subset of 10 piglets per group to assess concentrations of insulin-like growth factor 1. After 28 days of feeding, tissues were obtained from the same piglets to analyze gut morphology and relative mRNA expression of genes related to gut function. Even if the stress response as indicated by rectal temperature was not different between the groups, pigs supplemented with AAB-2 showed firmer feces after weaning and less days with diarrhea compared to control. Furthermore, the jejunal expression of the MUC-2 gene was reduced (P < 0.05) in group AAB-2. Both amino acid mixtures increased crypt depth in the duodenum. Collectively, the given results indicate that 0.3 % extra amino acid supplementation might alleviate post-weaning diarrhea but did not alter growth performance of weanling piglets.

2019 ◽  
Vol 4 (1) ◽  
pp. 49-58
Author(s):  
Madie R Wensley ◽  
Jason C Woodworth ◽  
Joel M Derouchey ◽  
Steve S Dritz ◽  
Mike D Tokach ◽  
...  

Abstract Three experiments were conducted to determine the effect of three fermented amino acids (AA) with their respective biomass compared to crystalline AA on the growth performance of swine and poultry. In experiment 1, 315 barrows (DNA 200 × 400, initially 11.3 ± 0.69 kg) were allotted to 1 of 4 dietary treatments with 5 pigs per pen and 15 or 16 pens per treatment. Dietary treatments included a negative control (16% standardized ileal digestible [SID] Tryptophan:lysine [Trp:Lys] ratio), positive control (21% SID Trp:Lys ratio from crystalline Trp), or diets containing Trp with biomass to provide 21 or 23.5% SID Trp:Lys ratios, respectively. Pigs fed the positive control or low Trp with biomass diet had increased (P < 0.05) ADG compared to pigs fed the negative control diet, with pigs fed the high Trp with biomass diet intermediate. Pigs fed the low Trp with biomass diet had increased (P < 0.05) G:F compared to the negative control diet, with others intermediate. In experiment 2, 1,320 1-d-old male broilers (Cobb 500, initially 45.2 g) were allotted to one of four dietary treatments with 33 birds per pen and 10 pens per treatment. Dietary treatments included a negative control (58/58% Threonine:lysine [Thr:Lys] ratio), positive control (65/66% Thr:Lys ratio from crystalline Thr), or diets containing Thr with biomass to provide 65/66 or 69/70% Thr:Lys ratios in starter and grower diets, respectively. Broilers fed the positive control or Thr with biomass diets had increased (P < 0.05) ADG compared to broilers fed the negative control diet. Broilers fed the positive control or the low Thr with biomass diet had increased (P < 0.05) G:F compared to the negative control and high Thr with biomass treatments. In experiment 3, 2,100 one-day-old male broilers (Cobb 500, initially 39.4 g) were allotted to one of four dietary treatments with 35 birds per pen and 15 pens per treatment. Dietary treatments included a negative control (59/63% Valine:lysine [Val:Lys] ratio), positive control (75/76% Val:Lys ratio from crystalline Val), or diets containing Val with biomass to provide 75/76 or 84/83% Val:Lys ratios in starter and grower diets, respectively. Broilers fed the positive control or Val with biomass diets had increased (P < 0.05) ADG, ADFI, and G:F compared to those fed the negative control diet. In conclusion, Trp, Thr, or Val with their respective biomass appear to be equally bioavailable and a suitable alternative to crystalline AA in swine and poultry diets.


2023 ◽  
Vol 83 ◽  
Author(s):  
A. Ayub ◽  
F. Rasool ◽  
N. Khan ◽  
S. N. Qaisrani ◽  
S. Parveen ◽  
...  

Abstract Ninety days study was conducted in hapas installed in earthen ponds. Fish of an average initial weight (220g) were evenly distributed in triplicate groups within fifteen hapas. Five experimental diets labeled as T1 (25% CP and NRC recommended amino acid level) as control diet, T2 (with 2% low protein and 5% amino acid supplementation), T3 (with 2% low protein and 10% amino acid supplementation), T4 (with 4% low protein and 10% amino acid supplementation) and T5 (with 4% low protein and 20% amino acid supplementation) were prepared. Fish were fed with @3% of their body weight twice a day at 10.00 & 16:00 hour. Significantly higher percent weight gain (420.18 ± 66.84a) and specific growth rate (13499.33±1273.54a) along with improved feed conversion ratio (1.29 ± 0.09b) and hundred percent survivals were recorded during the trial. Furthermore proximate analysis of meat showed significant improvement in the crude protein level (81.77 ± 0.19a) served with diet containing 20% limiting amino acids mixture. Therefore, limiting amino acids can be a source of cost effective feed and use safely in L. rohita diet.


1981 ◽  
Vol 33 (1) ◽  
pp. 87-97 ◽  
Author(s):  
A. J. Taylor ◽  
D. J. A. Cole ◽  
D. Lewis

ABSTRACTA basal diet containing 120 g crude protein per kg and 9g lysine per kg, and previously shown to be limiting in one or more essential amino acids and/or non-essential nitrogen, was examined. It was fed either alone to growing female pigs from 25 kg to 55 kg live weight or in combination with four supplements of synthetic amino acids each containing three out of isoleucine, methionine, threonine and tryptophan. A control diet containing 140 g crude protein per kg and 9g lysine per kg was also included. Blood samples were collected at 40 kg live weight in order to examine the influence of dietary treatments on blood metabolites. Results for growth performance, carcass composition and blood urea indicated that threonine was the first limiting amino acid in the basal diet. Plasma free amino acids gave no clear trend. Growth performance and carcass composition were unaffected by supplementation of the diet with glycine indicating that the dietary supply of non-essential nitrogen was adequate.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S42-S42
Author(s):  
Kohei Sugihara ◽  
Nobuhiko Kamada

Abstract Background Recent accumulating evidence suggests that amino acids have crucial roles in the maintenance of intestinal homeostasis. In inflammatory bowel disease (IBD), amino acid metabolism is changed in both host and the gut microbiota. Among amino acids, L-serine plays a central role in several metabolic processes that are essential for the growth and survival of both mammalian and bacterial cells. However, the role of L-serine in intestinal homeostasis and IBD remains incompletely understood. In this study, we investigated the effect of dietary L-serine on intestinal inflammation in a murine model of colitis. Methods Specific pathogen-free (SPF) mice were fed either a control diet (amino acid-based diet) or an L-serine-deficient diet (SDD). Colitis was induced by the treatment of dextran sodium sulfate (DSS). The gut microbiome was analyzed by 16S rRNA sequencing. We also evaluate the effect of dietary L-serine in germ-free mice and gnotobiotic mice that were colonized by a consortium of non-mucolytic bacterial strains or the consortium plus mucolytic bacterial strains. Results We found that the SDD exacerbated experimental colitis in SPF mice. However, the severity of colitis in SDD-fed mice was comparable to control diet-fed mice in germ-free condition, suggesting that the gut microbiota is required for exacerbation of colitis caused by the restriction of dietary L-serine. The gut microbiome analysis revealed that dietary L-serine restriction fosters the blooms of a mucus-degrading bacterium Akkermansia muciniphila and adherent-invasive Escherichia coli in the inflamed gut. Consistent with the expansion of mucolytic bacteria, SDD-fed mice showed a loss of the intestinal mucus layer. Dysfunction of the mucus barrier resulted in increased intestinal permeability, thereby leading to bacterial translocation to the intestinal mucosa, which subsequently increased the severity of colitis. The increased intestinal permeability and subsequent bacterial translocation were observed in SDD-fed gnotobiotic mice that colonized by mucolytic bacteria. In contrast, dietary L-serine restriction did not alter intestinal barrier integrity in gnotobiotic mice that colonized only by non-mucolytic bacteria. Conclusion Our results suggest that dietary L-serine regulates the integrity of the intestinal mucus barrier during inflammation by limiting the expansion of mucus degrading bacteria.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 200-201
Author(s):  
Hyunjun Choi ◽  
Sun Jong You ◽  
Beob Gyun G Kim

Abstract The objective was to determine the influence of amino acid (AA) supplementation during the adaptation period on the ileal digestibility of crude protein and AA in corn and soybean meal (SBM). Six barrows with an initial body weight of 30.9 ± 2.6 kg fitted with a T-cannula in the distal ileum were assigned to a 6 × 6 Latin square design with 6 dietary treatments and 6 periods. Two experimental diets contained corn or SBM as the sole source of AA and an N-free diet was additionally prepared. For AA supplementation groups, an AA mixture consisted of Gly, Lys, Met, Thr, Trp, Ile, Val, His, and Phe was added to the corn diet and the N-free diet at the expense of cornstarch, and an AA mixture of Lys, Met, and Thr was added to the SBM diet. All diets contained 0.5% of chromic oxide. The 6 experimental diets were fed to the pigs for 4 and half days, and the 3 diets containing AA mixture were switched to the respective diets without AA mixture during the following 2 and half days. Ileal digesta were collected during the last 2 days. The addition of AA mixture during the adaptation period caused increased apparent ileal digestibility of Arg and Trp in corn (P < 0.05), but did not affect that in SBM. The addition of AA mixture during the adaptation period caused increased apparent ileal digestibility of Pro and Gly regardless of feed ingredient (P < 0.05), but did not affect that of other AA. All AA except Pro in corn and SBM were unaffected by the addition of AA mixture during the adaptation period. In conclusion, the addition of amino acid during the adaptation period does not affect the standardized ileal digestibility of indispensable amino acids in feed ingredients.


2015 ◽  
Vol 114 (11) ◽  
pp. 1845-1851 ◽  
Author(s):  
Yean Yean Soong ◽  
Joseph Lim ◽  
Lijuan Sun ◽  
Christiani Jeyakumar Henry

AbstractConsumption of high glycaemic index (GI) and glycaemic response (GR) food such as white rice has been implicated in the development of type 2 diabetes. Previous studies have reported the ability of individual amino acids to reduce GR of carbohydrate-rich foods. Because of the bitter flavour of amino acids, they have rarely been used to reduce GR. We now report the use of a palatable, preformed amino acid mixture in the form of essence of chicken. In all, sixteen healthy male Chinese were served 68 or 136 ml amino acid mixture together with rice, or 15 or 30 min before consumption of white rice. Postprandial blood glucose and plasma insulin concentrations were measured at fasting and every 15 min after consumption of the meal until 60 min after the consumption of the white rice. Subsequent blood samples were taken at 30-min intervals until 210 min. The co-ingestion of 68 ml of amino acid mixture with white rice produced the best results in reducing the peak blood glucose and GR of white rice without increasing the insulinaemic response. It is postulated that amino acid mixtures prime β-cell insulin secretion and peripheral tissue uptake of glucose. The use of ready-to-drink amino acid mixtures may be a useful strategy for lowering the high-GI rice diets consumed in Asia.


2006 ◽  
Vol 6 (1) ◽  
pp. 47-59
Author(s):  
Nancy Montilla ◽  
◽  
Lolito Bestil ◽  
Sulpecio Bantugan ◽  

A feeding trial with broilers was conducted to evaluate the effects of amino acids (lysine and methionine) supplementation of diets low in protein content on the voluntary intake, feed conversion efficiency, broiler performance, and cost and return of broiler production. Results showed cumulative voluntary feed intake was not significantly affected by lowering the protein content of the diet. Cumulative weight gain of broilers was lower with diet when supplemented iwht lysine and methionine to meet requirements. Birds fed with diets low in protein has less efficient feed converstion, but became comparable with those receiveing diets high in protein when supplemented with amino acids. Feed cost per kilogram broiler produced was not significantly affected by diets used in the study, although the low-protien diet with amino acid supplement had the lowest values. In terms of return above feed and chick cost, broilers fed with high-protein diet had the greatest value, but not significantly different from birds fed with low-protien diet with amino acid supplementation which gave about P10 per bird higher returns than those fed low-protein diet without amino acid supplementation.


1990 ◽  
Vol 38 (3B) ◽  
pp. 609-622
Author(s):  
N.P. Lenis ◽  
J.T.M. van Diepen

Individual and group housed crossbred pigs 45 to 105 kg and 65 to 95 kg in experiments 1 and 2, respectively, were given basal diets with L-threonine 0.6, 1.2 and 1.8 g/kg. Positive and negative control diets contained total threonine 5.7 and 4.5 g/kg, respectively. To prevent other amino acids being limiting, the negative control diet was supplemented with lysine, methionine, tryptophan, isoleucine, histidine and valine. The positive control diet was supplemented with lysine and methionine. The requirement for total threonine of growing-finishing pigs for maximum growth performance was about 5.6 g/kg in a diet containing net energy 9.4 MJ/kg. This figure corresponds with about 4.7 g/kg apparent faecal digestible threonine and 4.3 apparent ileal digestible threonine. There was no difference between the growing and the finishing pigs. The requirement for ileal digestible threonine, relative to ileal digestible lysine requirement, was about 64%. It is concluded that dietary protein can be reduced by 2 percentage units without any adverse effect on growth performance, if limiting amino acids are sufficiently supplemented. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Sign in / Sign up

Export Citation Format

Share Document