Adventitious roots, leaf abscission and nutrient status of flooded Gmelina and Tectona seedlings

1989 ◽  
Vol 5 (4) ◽  
pp. 473-483 ◽  
Author(s):  
M. A. Osundina ◽  
O. Osonubi
Author(s):  
Zaid Raad Abbas ◽  
Aqeel Mohammed Majeed Al-Ezee ◽  
Sawsan H

This study was conducted to explore the ability of Pseudomonas fluorescens and Bacillus cereus to solubilizing a phosphate in soil for enhancing the planting growth and, its relation with soill characterization. The isolates were identified as P.fluorescens and B. cereus using convential analysis and, its phosphate solubilization ability and sidrophore was shown by the clear zone formation on National Botanical Research Institute���s Phosphate medium. Moreover, Pseudomonas fluorescens isolates (n = 9) and three of B. cereus isolated from agricultural area in Baghdad university, Mustansiriyah university and Diyala bridge. Results displayed that bacterial count were varied in soil samples according to their region, and ranging from 30 to 60 *10 2 CFU/g in Baghdad university soil to 10���20 *10 2 CFU/g in Mustansiriyah university soil, the Baghdad soil macronutrient which included: NH4, NO3, P, and K were, 8.42, 20.53, 19.09, 218.73 respectively, While the physio analysis revealed that the mean of pH was 7.3 and EC was 8.63. on the other hand the micronutrient analysis indicated that the soil samples were included Ca, Fe, Mn, Zn and Cu which gave their mean 5025.9, 8.9, 4.9, 0.5 and 1.5 respectevily. Results revealed that all isolated bacteria (9 isolates of P.fluorescens and three isolates of B. cereus gave ahalo zone which mean their ability to be phosphate solubilizing bacteria at 100%. Results revealed that all isolated bacteria were detected a ability to produce high levels from chelating agents (siderophores)) by P.fluorescens and. B cereus at 100%, when appeared ahalo clear zone. Furthermore, the high levels of phosphate solubilization and siderophore production were grouped in bacterial species isolated from Iraqi soils. might be attributed to many soil factors such as soil nutrient status, soil acidity, water content, organic matter and soil enzyme activities.


Objective: In this review, we highlight the importance of an optimal nutrient status to strengthen the immune system during the COVID-19 crisis, focusing on the most relevant constituents that reduce inflammation and Provide a holistic perspective nutritional therapy the new coronavirus (covid-19) to assist researchers and improving areas for future response plans to deal with these diseases, and to provide a summary of the nutrients that help stop their development. Methods: This is a theoretical study conducted through a comprehensive review of the literature and research in the research engines (PubMed), (Read) and (ELSEVIER) and other new studies published in Chinese; we obtained information nutritional treatment who contributed to increasing the immunity of patients, due to the lack of treatment for this disease. Results: Until now no effective drug for the treatment of new coronavirus, pneumonia (covid-19) has been found. The development of vaccines is still in animal experiments. Recommendations and measures to control the spread of infection and nutritional therapy are still the only way to prevent the spread of covid-19 virus. Because, People relied only on treatments that were effective on previous viruses, for example those that have been used during the SARS and MERS epidemics. Discussion: The Covid-19 virus remains a global concern and more research is needed to control it. In addition, people need to know the nutrition ingredients that have a positive effect on increasing the immunity of the human body.


2020 ◽  
Vol 51 (4) ◽  
pp. 1001-1014
Author(s):  
Sulaiman & Sadiq

The experiment was conducted in a greenhouse during 2017 and 2018 growing seasons to evaluate the impact of the shading and various nutrition programs on mitigating heat stress, reducing the use of chemical minerals, improving the reproductive growth and yield of tomato plant. Split-plot within Randomized Complete Block Design (RCBD) with three replications was conducted in this study. Shading factor was allocated in the main plots and the nutrition programs distributed randomly in the subplots. Results indicate that shading resulted in the decrease of daytime temperature by 5.7˚C as an average for both seasons; thus a significant increasing was found in leaf contents of macro nutrients (Nitrogen, Phosphorous, and Potassium), and micro nutrients (Iron, Zinc and Boron), except the Iron content in 2018 growing season. Furthermore, shading improved significantly the reproductive growth and tomato yield. Among the plant nutrition programs, the integrated nutrient management (INM) including the application of organic substances, bio inoculum of AMF and 50% of the recommended dose of chemical fertilizers; lead to the enhancement of nutrients content, reproductive characteristics and plant yield. Generally, combination of both shading and INM showed positive effects on plants nutrient status and persisting balance on tomato flowering growth and fruits yield.


2010 ◽  
Vol 18 (6) ◽  
pp. 1340-1344
Author(s):  
Li-Zhou ZHANG ◽  
Dian-Wu WANG ◽  
Yu-Ming ZHANG ◽  
Yi-Song CHENG ◽  
Hong-Jun LI ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5723
Author(s):  
Yuan-Yuan Xu ◽  
Sheng-Rui Liu ◽  
Zhi-Meng Gan ◽  
Ren-Fang Zeng ◽  
Jin-Zhi Zhang ◽  
...  

A high-density genetic linkage map is essential for genetic and genomic studies including QTL mapping, genome assembly, and comparative genomic analysis. Here, we constructed a citrus high-density linkage map using SSR and SNP markers, which are evenly distributed across the citrus genome. The integrated linkage map contains 4163 markers with an average distance of 1.12 cM. The female and male linkage maps contain 1478 and 2976 markers with genetic lengths of 1093.90 cM and 1227.03 cM, respectively. Meanwhile, a genetic map comparison demonstrates that the linear order of common markers is highly conserved between the clementine mandarin and Poncirus trifoliata. Based on this high-density integrated citrus genetic map and two years of deciduous phenotypic data, two loci conferring leaf abscission phenotypic variation were detected on scaffold 1 (including 36 genes) and scaffold 8 (including 107 genes) using association analysis. Moreover, the expression patterns of 30 candidate genes were investigated under cold stress conditions because cold temperature is closely linked with the deciduous trait. The developed high-density genetic map will facilitate QTL mapping and genomic studies, and the localization of the leaf abscission deciduous trait will be valuable for understanding the mechanism of this deciduous trait and citrus breeding.


2021 ◽  
pp. 1-17
Author(s):  
Anna Assimakopoulou ◽  
Ioannis Salmas ◽  
Aikaterina Tsikra ◽  
Alexandros-Iasonas Bastas ◽  
Maria Bakea ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document