scholarly journals MgtE From Rhizobium leguminosarum Is a Mg2+ Channel Essential for Growth at Low pH and N2 Fixation on Specific Plants

2015 ◽  
Vol 28 (12) ◽  
pp. 1281-1287 ◽  
Author(s):  
Graham Hood ◽  
Ramakrishnan Karunakaran ◽  
J. Allan Downie ◽  
Philip Poole

MgtE is predicted to be a Rhizobium leguminosarum channel and is essential for growth when both Mg2+ is limiting and the pH is low. N2 was only fixed at 8% of the rate of wild type when the crop legume Pisum sativum was inoculated with an mgtE mutant of R. leguminosarum and, although bacteroids were present, they were few in number and not fully developed. R. leguminosarum MgtE was also essential for N2 fixation on the native legume Vicia hirsuta but not when in symbiosis with Vicia faba. The importance of MgtE and the relevance of the contrasting phenotypes is discussed.

2001 ◽  
Vol 47 (12) ◽  
pp. 1068-1074 ◽  
Author(s):  
Chantal J. Beauchamp ◽  
Joseph W. Kloepper ◽  
Joseph J. Shaw ◽  
François-P. Chalifour

2001 ◽  
Vol 47 (12) ◽  
pp. 1068-1074 ◽  
Author(s):  
Chantal J Beauchamp ◽  
Joseph W Kloepper ◽  
Joseph J Shaw ◽  
François-P. Chalifour

There is a lack of knowledge concerning the effect of nitrate–nitrogen (NO3––N) at levels known to inhibit nodule formation and functioning on root colonization of dinitrogen-fixing legumes. Firstly, this study investigated potential differences between Rhizobium leguminosarum bv. viciae 175F9 and its bioluminescent-labeled strain 175F9.lux on root colonization of faba bean (Vicia faba L.) and pea (Pisum sativum L.). These two strains similarly colonized the roots of both hosts. Secondly, this study evaluated the effects of 0 and 10 mol·m–3 NO3––N on root colonization of faba bean and pea by strain 175F9.lux, over time. Averaged over both hosts and harvest dates, the presence of NO3––N increased the rhizobial population and the root length colonized. In addition, our results showed that bioluminescence activity increased from 7 to 14 days after sowing and was not correlated to rhizobial population. Finally, to demonstrate that an increase in bioluminescence activity was not an indirect effect of nitrate on R. leguminosarum bv. viciae 175F9.lux, this study investigated the effects of increasing carbon (mannitol) and nitrogen (NO3––N) concentrations on the rhizobial population and bioluminescence activity. The carbon source was more important than the nitrogen source to increase the rhizobial population and bioluminescence activity, which increased with increasing mannitol concentration, but not with increasing nitrate concentration. Results from this study demonstrated that NO3––N increased rhizobial population, especially for faba bean, and the length of root colonized.Key words: nitrate, nitrogen, rhizosphere, rhizobacteria, luminescence


Author(s):  
Boulbaba L’taief ◽  
Neila Abdi ◽  
Sihem Smari ◽  
Amel Ayari-Akkari ◽  
Mouna Jeridi ◽  
...  

Vicia faba L.-rhizobia symbiosis is utilized in different biological ways to improve the productivity of faba beans. This research aims to analyze the effects of the Rhizobium strain on nodulation, N2 fixation, growth, and ion accumulation under salt stress in Viciafaba. The commercial cultivar of faba beans (Viciafaba L. var. minor) was inoculated with the Rhizobium leguminosarumbiovar, by considering viciae strains S10 and S16, after 15 days of growth. This inoculation was carried out in the solution culture consisting of two salt concentrations; 0 mmole l-1NaCl and 50 mmole l-1NaCl. The results revealed that under saline and non-saline conditions, S10 and S16 strains of Rhizobium leguminosarum resulted in the formation of ineffective and effective symbiosis with faba beans. However, the presence of salt stress resulted in increasing the biomass of nodule and nitrogen content. The concentrations of sodium and chloride, in shoot and root, were increased in the presence of salinity. However, potassium concentration was only increased in the shoot. With and without salinity, phosphorus concentration in the shoots was not modified. The results revealed that the salt tolerance of faba beans, inoculated with two strains of Rhizobium were found to possess association with their stable growth. Moreover, the salt tolerance of faba beans inoculated with two salts tolerant rhizobia was also associated with an increment in the capacity of faba beans to increase nodulation and the concentration of shoot N2, Na and Cl-content. In addition, salt tolerance of this variety, inoculated with Rhizobium strains was associated with a decrement in the concentration of K+ in shoot under the salt constraints.


2007 ◽  
Vol 20 (11) ◽  
pp. 1421-1430 ◽  
Author(s):  
Christian Sohlenkamp ◽  
Kanaan A. Galindo-Lagunas ◽  
Ziqiang Guan ◽  
Pablo Vinuesa ◽  
Sally Robinson ◽  
...  

Lysyl-phosphatidylglycerol (LPG) is a well-known membrane lipid in several gram-positive bacteria but is almost unheard of in gram-negative bacteria. In Staphylococcus aureus, the gene product of mprF is responsible for LPG formation. Low pH-inducible genes, termed lpiA, have been identified in the gram-negative α-proteobacteria Rhizobium tropici and Sinorhizobium medicae in screens for acid-sensitive mutants and they encode homologs of MprF. An analysis of the sequenced bacterial genomes reveals that genes coding for homologs of MprF from S. aureus are present in several classes of organisms throughout the bacterial kingdom. In this study, we show that the expression of lpiA from R. tropici in the heterologous hosts Escherichia coli and Sinorhizobium meliloti causes formation of LPG. A wild-type strain of R. tropici forms LPG (about 1% of the total lipids) when the cells are grown in minimal medium at pH 4.5 but not when grown in minimal medium at neutral pH or in complex tryptone yeast (TY) medium at either pH. LPG biosynthesis does not occur when lpiA is deleted and is restored upon complementation of lpiA-deficient mutants with a functional copy of the lpiA gene. When grown in the low-pH medium, lpiA-deficient rhizobial mutants are over four times more susceptible to the cationic peptide polymyxin B than the wild type.


1994 ◽  
Vol 45 (3) ◽  
pp. 613 ◽  
Author(s):  
JM Carter ◽  
WK Gardner ◽  
AH Gibson

The response of faba beans (Vicia faba L. cv. Fiord) to seed inoculation with eight strains of Rhizobium leguminosarum biovar. viciae was examined in field experiments at six sites on acid soils in south-west Victoria. At two of the sites, two additional strains were examined, and in 1988, 14 strains were examined at one site. Very low natural populations of R. leguminosarum bv. viciae were found at the experimental sites. Most strains resulted in improved early nodulation and increased grain yield at all sites, when compared to inoculation with the commercial strain of rhizobia (SU391). Plant dry matter production and nitrogen accumulation in the plant shoot tissue was also increased at one site during the flowering period by some strains. Large visual differences between plots inoculated with SU391 and other strains were evident at most sites. Most uninoculated treatments were not nodulated and yielded very poorly. Treatments inoculated with the strain SU391 performed similarly to the uninoculated treatments.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 173
Author(s):  
Abeer F. Desouky ◽  
Ahmed H. Ahmed ◽  
Hartmut Stützel ◽  
Hans-Jörg Jacobsen ◽  
Yi-Chen Pao ◽  
...  

Pathogenesis-related (PR) proteins are known to play relevant roles in plant defense against biotic and abiotic stresses. In the present study, we characterize the response of transgenic faba bean (Vicia faba L.) plants encoding a PR10a gene from potato (Solanum tuberosum L.) to salinity and drought. The transgene was under the mannopine synthetase (pMAS) promoter. PR10a-overexpressing faba bean plants showed better growth than the wild-type plants after 14 days of drought stress and 30 days of salt stress under hydroponic growth conditions. After removing the stress, the PR10a-plants returned to a normal state, while the wild-type plants could not be restored. Most importantly, there was no phenotypic difference between transgenic and non-transgenic faba bean plants under well-watered conditions. Evaluation of physiological parameters during salt stress showed lower Na+-content in the leaves of the transgenic plants, which would reduce the toxic effect. In addition, PR10a-plants were able to maintain vegetative growth and experienced fewer photosystem changes under both stresses and a lower level of osmotic stress injury under salt stress compared to wild-type plants. Taken together, our findings suggest that the PR10a gene from potato plays an important role in abiotic stress tolerance, probably by activation of stress-related physiological processes.


Sign in / Sign up

Export Citation Format

Share Document