Improved growth and yield of Faba beans (Vicia faba cv. Fiord) by inoculation with strains of Rhizobium leguminosarum biovar. viciae in acid soils in south west Victoria

1994 ◽  
Vol 45 (3) ◽  
pp. 613 ◽  
Author(s):  
JM Carter ◽  
WK Gardner ◽  
AH Gibson

The response of faba beans (Vicia faba L. cv. Fiord) to seed inoculation with eight strains of Rhizobium leguminosarum biovar. viciae was examined in field experiments at six sites on acid soils in south-west Victoria. At two of the sites, two additional strains were examined, and in 1988, 14 strains were examined at one site. Very low natural populations of R. leguminosarum bv. viciae were found at the experimental sites. Most strains resulted in improved early nodulation and increased grain yield at all sites, when compared to inoculation with the commercial strain of rhizobia (SU391). Plant dry matter production and nitrogen accumulation in the plant shoot tissue was also increased at one site during the flowering period by some strains. Large visual differences between plots inoculated with SU391 and other strains were evident at most sites. Most uninoculated treatments were not nodulated and yielded very poorly. Treatments inoculated with the strain SU391 performed similarly to the uninoculated treatments.

2014 ◽  
Vol 177 (5) ◽  
pp. 741-747 ◽  
Author(s):  
Christina Neuhaus ◽  
Christoph-Martin Geilfus ◽  
Karl-Hermann Mühling

1996 ◽  
Vol 36 (4) ◽  
pp. 479 ◽  
Author(s):  
DC Lewis ◽  
WA Hawthorne

Faba beans (Vicia faba cv. Fiord) were grown in 1 glasshouse and 3 field experiments to calibrate the critical concentrations of phosphorus (P) and zinc (Zn) in selected plant tissues for vegetative and grain yields. In the field experiments, responses in grain yield to soil-applied P were between 0.5 and 0.8 t/ha (20-25%) at sites with extractable Colwell soil P concentrations of 20 and 23 mg/kg. Similarly, grain yields were increased by 0.6-1.2 t/ha (20-30%) from the application of either soil-applied or foliar Zn. These field responses to Zn only occurred if P fertiliser was applied at sowing. Maximum yields were obtained by either applying about 2 kg Zn/ha to the soil at sowing, or 500 g Zn/ha as a foliar spray, 8 weeks after sowing. In field experiments, critical P concentrations in the youngest open leaf during vegetative growth for prediction of maximum grain yield in the field, remained constant over a 10-week growing period. A critical nutrient range of 0.40-0.41% is proposed. However, critical concentrations of P in whole top for maximum grain yield, declined from 0.40 to 0.27% over the same growing period. For bean seed collected at harvest, a critical concentration of 0.36% P for maximum grain yield was derived. Critical concentrations of Zn during vegetative growth for prediction of maximum grain yield, derived in both glasshouse and field experiments, were very similar in youngest open leaf and whole top, and no significant decline with plant age was observed; a critical nutrient range of 19-24 mg/kg is proposed. For seed collected at harvest, a critical nutrient range for diagnosis of Zn deficiency of 13-15 mg/kg is suggested.


1979 ◽  
Vol 15 (1) ◽  
pp. 27-32 ◽  
Author(s):  
E. R. Rhodes ◽  
D. Nangju

SUMMARYTwo field experiments were conducted to evaluate the effectiveness of several pelleting materials in increasing the yields of cowpea (Vigna unguiculata (L.) Walp.) and soyabean (Glycine max (L.) Merr.) on acid soils in Sierra Leone. The results demonstrated the beneficial effect of molybdenum, applied either alone or in combination with rock phosphate, in improving growth and yield of cowpea. The beneficial effect of molybdenum was comparable (Exp. 1) or greater (Exp. 2) than the effect of liming with 3 t/ha basic slag. However, none of the coating materials had any effect on soyabean growth and yield, although molybdenum significantly increased nodules/plant. Calcium carbonate and basic slag pelletings were ineffective in both crops.


2003 ◽  
Vol 51 (4) ◽  
pp. 437-444 ◽  
Author(s):  
H. Z. Ghosheh ◽  
M. K. El-Shatnawi

Field experiments were conducted to evaluate the efficacy of herbicides applied alone or in combination for broadleaf weed control in chickpeas, faba beans and lentils. Herbicide applications of metribuzin pre-emergence; pendimethalin pre-emergence; bentazon post-emergence; metribuzin pre-emergence followed by bentazon post-emergence; and pendimethalin pre-emergence followed by bentazon post-emergence were examined and compared to weedy and hand-weeded plots. In chickpeas, metribuzin provided substantial control of broadleaf weeds; however, some injury was observed. Pre-emergence applications in faba beans provided substantial control of broadleaf weeds, and the bean yield was comparable to hand-weeded plots. No additional advantage was observed from combining bentazon with pre-emergence applications. Lentil plants were sensitive to herbicide applications, which caused crop injury and reduced the seed yield significantly.


Author(s):  
Boulbaba L’taief ◽  
Neila Abdi ◽  
Sihem Smari ◽  
Amel Ayari-Akkari ◽  
Mouna Jeridi ◽  
...  

Vicia faba L.-rhizobia symbiosis is utilized in different biological ways to improve the productivity of faba beans. This research aims to analyze the effects of the Rhizobium strain on nodulation, N2 fixation, growth, and ion accumulation under salt stress in Viciafaba. The commercial cultivar of faba beans (Viciafaba L. var. minor) was inoculated with the Rhizobium leguminosarumbiovar, by considering viciae strains S10 and S16, after 15 days of growth. This inoculation was carried out in the solution culture consisting of two salt concentrations; 0 mmole l-1NaCl and 50 mmole l-1NaCl. The results revealed that under saline and non-saline conditions, S10 and S16 strains of Rhizobium leguminosarum resulted in the formation of ineffective and effective symbiosis with faba beans. However, the presence of salt stress resulted in increasing the biomass of nodule and nitrogen content. The concentrations of sodium and chloride, in shoot and root, were increased in the presence of salinity. However, potassium concentration was only increased in the shoot. With and without salinity, phosphorus concentration in the shoots was not modified. The results revealed that the salt tolerance of faba beans, inoculated with two strains of Rhizobium were found to possess association with their stable growth. Moreover, the salt tolerance of faba beans inoculated with two salts tolerant rhizobia was also associated with an increment in the capacity of faba beans to increase nodulation and the concentration of shoot N2, Na and Cl-content. In addition, salt tolerance of this variety, inoculated with Rhizobium strains was associated with a decrement in the concentration of K+ in shoot under the salt constraints.


2004 ◽  
Vol 55 (8) ◽  
pp. 863 ◽  
Author(s):  
Imma Farré ◽  
Michael J. Robertson ◽  
Senthold Asseng ◽  
Robert J. French ◽  
Miles Dracup

Simulation of narrow-leafed lupin (Lupinus angustifolius L.) production would be a useful tool for assessing agronomic and management options for the crop. This paper reports on the development and testing of a model of lupin development and growth, designed for use in the cropping systems simulator, APSIM (Agricultural Production Systems Simulator). Parameters describing leaf area expansion, phenology, radiation interception, biomass accumulation and partitioning, water use, and nitrogen accumulation were obtained from the literature or derived from field experiments. The model was developed and tested using data from experiments including different locations, cultivars, sowing dates, soil types, and water supplies. Flowering dates ranged from 71 to 109 days after sowing and were predicted by the model with a root mean square deviation (RMSD) of 4–5 days. Observed grain yields ranged from 0.5 to 2.7 t/ha and were simulated by the model with a RMSD of 0.5 t/ha. Simulation of a waterlogging effect on photosynthesis improved the model performance for leaf area index (LAI), biomass, and yield. The effect of variable rainfall in Western Australia and sowing date on yield was analysed using the model and historical weather data. Yield reductions were found with delay in sowing, particularly in water-limited environments. The model can be used for assessing some agronomic and management options and quantifying potential yields for specific locations, soil types, and sowing dates in Western Australia.


Author(s):  
Ibrahim El-Akhdar

Faba bean (Vicia faba L.) represents a major source of protein for animal and human nutrition, and provides several benefits such as improved soil quality. The Giza cultivar 87 (Vicia faba L.) was evaluated in three different salinity levels (6.9, 8.7 and 14.8 dSm-1) during two successive cropping seasons (2016-2017 and 2017-2018). The experiment was designed to analyze effect of soil salinity on nitrogen fixation, protein, chemical composition and crop productivity (for both grain and straw). Three phosphorus levels and inoculation with Rhizobium leguminosarum bv. viciae were investigated to improve the growth of Vicia faba L under these conditions. Soil salinity levels reduced the grain number and straw weight of plants. Moreover, yield reductions were associated with increasing soil salinity levels confirming salinity effects on faba bean productivity. Salinity induced a significant decreased in all plant growth parameters, plant chlorophyll and grains proteins, as well as increased Na% of faba bean plants. The plants treated with R. leguminosarum bv. viciae showed significant increase in growth traits such as plant length (%), plant fresh weight (%), protein, N-content and dry weight. On the other hand, the dual treatments with R. leguminosarum bv. viciae plus phosphorus gave a great results compared with inoculation or phosphorus alone. Symbiotic nitrogen fixation inoculation enhanced the growth and yield parameters.


1977 ◽  
Vol 57 (3) ◽  
pp. 845-852 ◽  
Author(s):  
J. A. FROWD ◽  
C. C. BERNIER

Faba beans (Vicia faba var. minor Beck, and V. faba equina Pers.) in Manitoba showed a range of leaf mosaic and leaf and shoot necrosis symptoms. Virus isolates from diseased plants were grouped as mild (leaf mosaic, no necrosis) and severe (mosaic with necrosis) types. Two contrasting isolates were identified as variants of bean yellow mosaic virus by host range, aphid transmission, electron microscopy and serology. In field experiments, early infection of faba beans had a severe effect on root nodulation. Infections at pre-bloom, full bloom and post-bloom reduced yields by 59, 48 and 17% (mild isolate) and 96, 70 and 17% (severe isolate), respectively. Neither of the two isolates was transmitted through seed from plants infected at any of the three stages.


1970 ◽  
Vol 17 ◽  
pp. 17-22 ◽  
Author(s):  
Kamal Singh ◽  
A. A. Khan ◽  
Iram Khan ◽  
Rose Rizvi ◽  
M. Saquib

Plant growth, yield, pigment and protein content of cow-pea were increased significantly at lower levels (20 and 40%) of fly ash but reverse was true at higher levels (80 and 100%). Soil amended by 60% fly ash could cause suppression in growth and yield in respect to 40% fly ash treated cow-pea plants but former was found at par with control (fly ash untreated plants). Maximum growth occurred in plants grown in soil amended with 40% fly ash. Nitrogen content of cow-pea was suppressed progressively in increasing levels of fly ash. Moreover,  Rhizobium leguminosarum  influenced the growth and yield positively but Meloidogyne javanica caused opposite effects particularly at 20 and 40% fly ash levels. The positive effects of R. leguminosarum were marked by M. javanica at initial levels. However, at 80 and 100% fly ash levels, the positive and negative effects of R. leguminosarum and/or M. javanica did not appear as insignificant difference persist among such treatments.Key words:  Meloidogyne javanica; Rhizobium leguminosarum; Fly ash; Growth; YieldDOI: 10.3126/eco.v17i0.4098Ecoprint An International Journal of Ecology Vol. 17, 2010 Page: 17-22 Uploaded date: 28 December, 2010  


Sign in / Sign up

Export Citation Format

Share Document